The cochlear implant (CI) is a neuroprosthesis that allows profoundly deaf patients to recover speech intelligibility. This recovery goes through long-term adaptative processes to build coherent percepts from the coarse information delivered by the implant. Here we analyzed the longitudinal postimplantation evolution of word recognition in a large sample of CI users in unisensory (visual or auditory) and bisensory (visuoauditory) conditions. We found that, despite considerable recovery of auditory performance during the first year postimplantation, CI patients maintain a much higher level of word recognition in speechreading conditions compared with normally hearing subjects, even several years after implantation. Consequently, we show that CI users present higher visuoauditory performance when compared with normally hearing subjects with similar auditory stimuli. This better performance is not only due to greater speechreading performance, but, most importantly, also due to a greater capacity to integrate visual input with the distorted speech signal. Our results suggest that these behavioral changes in CI users might be mediated by a reorganization of the cortical network involved in speech recognition that favors a more specific involvement of visual areas. Furthermore, they provide crucial indications to guide the rehabilitation of CI patients by using visually oriented therapeutic strategies.cochlear implant ͉ deafness ͉ multisensory integration ͉ speech comprehension D espite the apparent division between sensory modalities from the receptors to high cortical levels, we can simultaneously integrate visual and auditory signals resulting in qualitative percepts distinct from those derived from a single unisensory stimulus (1, 2). Furthermore, in cases of precise temporal or spatial congruency between the bisensory stimuli, multisensory integration is expressed at the behavioral level by perceptual improvements by reducing ambiguity (3, 4) and at the neuronal level by enhancing neuronal activity (5). Multisensory integration is also essential for speech recognition, which is based on the simultaneous integration of visual information derived from lip movements and auditory cues produced by the talker (6). The McGurk effect, in which a mismatch between the visual and auditory speech signals is artificially introduced, reveals that the visual information derived from lip movements can strongly influence our auditory perception (7). Although we might not be aware of the relevance of the visual cues for normal speech recognition, the influence of vision becomes convincingly apparent when the auditory information is embedded in noise. In degraded auditory conditions, the visuoauditory presentation leads to higher performance of recognition, when compared with the auditory alone stimulation (8, 9), in a mechanism that mimics an improvement in the acoustic signal-to-noise ratio (SNR) (10).In normally hearing (NH) subjects, although speechreading performance is very low, the association during development between the...
Modern cochlear implantation technologies allow deaf patients to understand auditory speech; however, the implants deliver only a coarse auditory input and patients must use long-term adaptive processes to achieve coherent percepts. In adults with post-lingual deafness, the high progress of speech recovery is observed during the first year after cochlear implantation, but there is a large range of variability in the level of cochlear implant outcomes and the temporal evolution of recovery. It has been proposed that when profoundly deaf subjects receive a cochlear implant, the visual cross-modal reorganization of the brain is deleterious for auditory speech recovery. We tested this hypothesis in post-lingually deaf adults by analysing whether brain activity shortly after implantation correlated with the level of auditory recovery 6 months later. Based on brain activity induced by a speech-processing task, we found strong positive correlations in areas outside the auditory cortex. The highest positive correlations were found in the occipital cortex involved in visual processing, as well as in the posterior-temporal cortex known for audio-visual integration. The other area, which positively correlated with auditory speech recovery, was localized in the left inferior frontal area known for speech processing. Our results demonstrate that the visual modality's functional level is related to the proficiency level of auditory recovery. Based on the positive correlation of visual activity with auditory speech recovery, we suggest that visual modality may facilitate the perception of the word's auditory counterpart in communicative situations. The link demonstrated between visual activity and auditory speech perception indicates that visuoauditory synergy is crucial for cross-modal plasticity and fostering speech-comprehension recovery in adult cochlear-implanted deaf patients.
In our series, the sensitivity of HRCT scan to otosclerosis was 95.1%. Hypodense otosclerotic foci were mostly localized at the anterior part of footplate. Negative or doubtful cases were associated with the highest incidence of stapes footplate complications. Foci involving otic capsule, internal auditory canal, or round window led to a significantly higher risk of sensorineural hearing loss.
Psychophysical and neuroimaging studies in both animal and human subjects have clearly demonstrated that cortical plasticity following sensory deprivation leads to a brain functional reorganization that favors the spared modalities. In postlingually deaf patients, the use of a cochlear implant (CI) allows a recovery of the auditory function, which will probably counteract the cortical crossmodal reorganization induced by hearing loss. To study the dynamics of such reversed crossmodal plasticity, we designed a longitudinal neuroimaging study involving the follow-up of 10 postlingually deaf adult CI users engaged in a visual speechreading task. While speechreading activates Broca's area in normally hearing subjects (NHS), the activity level elicited in this region in CI patients is abnormally low and increases progressively with post-implantation time. Furthermore, speechreading in CI patients induces abnormal crossmodal activations in right anterior regions of the superior temporal cortex normally devoted to processing human voice stimuli (temporal voice-sensitive areas-TVA). These abnormal activity levels diminish with post-implantation time and tend towards the levels observed in NHS. First, our study revealed that the neuroplasticity after cochlear implantation involves not only auditory but also visual and audiovisual speech processing networks. Second, our results suggest that during deafness, the functional links between cortical regions specialized in face and voice processing are reallocated to support speech-related visual processing through cross-modal reorganization. Such reorganization allows a more efficient audiovisual integration of speech after cochlear implantation. These compensatory sensory strategies are later completed by the progressive restoration of the visuo-audio-motor speech processing loop, including Broca's area.
In the operated ear, 150 CT scans (75%) revealed an isolated fenestral otosclerosis; 35 (17.5%) were classified as extensive otosclerosis. Mean preoperative BC was significantly poorer in extensive otosclerosis (30.3 dB) than in isolated fenestral otosclerosis (24.6 dB). Mean postoperative BC remained lower in extensive otosclerosis (30.3 dB) than in isolated fenestral otosclerosis (21.2 dB). An overclosure greater than 10 dB was found in 20% of isolated fenestral otoscleroses and in 2.85% of extensive otoscleroses (chi-square: 5.5; p = 0.02).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.