Transmission of HIV-1 is predominantly restricted to macrophage (Mphi)-tropic strains. Langerhans cells (LCs) in mucosal epithelium, as well as macrophages located in the submucosal tissues, may be initial targets for HIV-1. This study was designed to determine whether restricted transmission of HIV-1 correlates with expression and function of HIV-1 co-receptors on LCs and macrophages. Using polyclonal rabbit IgGs specific for the HIV co-receptors cytokines CXCR4 and CCR5, we found that freshly isolated epidermal LCs (resembling resident mucosal LCs) expressed CCR5, but not CXCR, on their surfaces. In concordance with surface expression, fresh LCs fused with Mphi-tropic but not with T-tropic HIV-1 envelopes. However, fresh LCs did contain intracellular CXCR4 protein that was transported to the surface during in vitro culture. Macrophages expressed high levels of both co-receptors on their surfaces, but only CCR5 was functional in a fusion assay. These data provide several possible explanations for the selective transmission of Mphi-tropic HIV variants and for the resistance to infection conferred by the CCR5 deletion.
The entry of human immunodeficiency virus type 1 (HIV-1) into cells is initiated by binding of the viral glycoprotein gp120-gp41 to its cellular receptor CD4. The gp120-CD4 complex formed at the cell surface undergoes conformational changes that may allow its association with an additional membrane component(s) and the eventual formation of the fusion complex. These conformational rearrangements are accompanied by immunological changes manifested by altered reactivity with monoclonal antibodies specific for the individual components and presentation of new epitopes unique to the postbinding complex. In order to analyze the structure and function of the gp120-CD4 complex, monoclonal antibodies were generated from splenocytes of BALB/c mice immunized with soluble CD4-gp120 (IIIB) molecules (J. M. Gershoni, G. Denisova, D. Raviv, N. I. Smorodinsky, and D. Buyaner, FASEB J. 7:1185-1187 1993). One of those monoclonal antibodies, CG10, was found to be strictly complex specific. Here we demonstrate that this monoclonal antibody can significantly enhance the fusion of CD4 ؉ cells with effector cells expressing multiple HIV-1 envelopes. Both T-cell-line-tropic and macrophage-tropic envelope-mediated cell fusion were enhanced, albeit at different optimal doses. Furthermore, infection of HeLa CD4 ؉ (MAGI) cells by HIV-1 LAI, ELI1, and ELI2 strains was increased two-to fourfold in the presence of CG10 monoclonal antibodies, suggesting an effect on viral entry. These findings indicate the existence of a novel, conserved CD4-gp120 intermediate structure that plays an important role in HIV-1 cell fusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.