A dip-coating technique was employed to prepare anatase phase of titania thin films. Fluorine doped tin oxide substrates were used to prepare titania thin films. The samples were annealed at 550°C for 18 h. X-ray diffraction results revealed the amorphous and anatase phases of TiO 2 for as-synthesized and annealed samples, respectively. The crystallite size of anatase TiO 2 thin films was almost 25 nm for annealed samples. UV-visible confirmed the energy band gap 3.86 and 3.64 eV for as-prepared and calcinated titania thin films. The reduction in the energy band gap could be due to the change in crystallization and agglomeration of small grains after calcination. The morphology of the prepared films was investigated by field emission scanning electron microscopy which demonstrated the agglomeration of spherical particles of TiO 2 with average particle size of about 30 nm. The molecular properties (chemical bonding) of the samples were investigated by means of Fourier Transform Infrared (FTIR) spectroscopy. FTIR analysis exhibited the formation of titania, functional group OH, hydroxyl stretching vibrations of the C-OH groups, bending vibration mode of H-O-H, alkyl C-H stretch, stretching band of Ti-OH, CN asymmetric band stretching, and C=O saturated aldehyde.
The ability to produce high-entropy alloys with an amorphous structure, so-called high-entropy metallic glasses (HEMGs), offers the possibility to produce new compositions with good mechanical properties and resistance to corrosion. In this study, corrosion behavior was studied in two HEMGs, FeCoNiCrB and FeCoNiCr(BSi). In both cases, the total amount of metalloid atoms was kept constant at 20 at.%. The electrochemical behavior of these alloys was studied by means of linear polarization resistance (LPR) measurements and electrochemical impedance spectroscopy in a 3 wt.% NaCl solution. The effect of corrosion was characterized by using X-ray photoelectron spectroscopy (XPS) and the surface morphology was checked using a scanning electron microscope (SEM). The results show that samples with B but without Si exhibit better corrosion resistance due to its chemical homogeneity and lack of structural heterogeneity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.