Crustal storage and transit play a critical role in the compositional evolution of arc magmas; however, the enigmatic nature of lower crustal magma storage and early differentiation limit our understanding of the connections between the physical processes of subduction zones and the architecture of the arc crust. We present new geochemical data and applications of existing barometric and chronometric tools to interrogate the mantle source compositions, crustal storage depths, and ascent timescales of a primitive, high-Mg, clinopyroxene-bearing cinder cone, the basaltic andesite of Box Canyon, located in the vicinity of Lassen Volcanic National Park, CA, in the southern Cascades. Petrographic examination in addition to bulk and in situ geochemical analyses (XRF, LA-ICP-MS, and EPMA) of tephra and lava-derived samples reveals co-crystallization of clinopyroxene and olivine as phenocrysts and glomerocrysts with ~ Mg# 80 and > Fo 85 , respectively. Phase equilibria experiments of analogous Cascade Arc magma compositions estimate crustal storage of the observed phase assemblage at pressures in the lower crust > 700 MPa. Reverse zonation in olivine and clinopyroxene phenocryst interiors from core-rim analytical profiles record a lower crustal mafic mixing event. Results from one-dimensional, multi-elemental olivine and clinopyroxene diffusion models fit to these interior mixing zones provide an assessment of available trace element (Ti, La, Yb, Ce, and Nd) diffusion chronometers in clinopyroxene by considering multiple element profiles within two phases that experienced the same pre-eruptive conditions. While multi-elemental and multi-phase diffusion timescales span two to three orders of magnitude, Ni in olivine profiles provide the most-robust estimate of 19.1 ± 8.6 years from mixing-to-eruption. Our results provide new constraints on arc crustal differentiation processes, indicate rapid crustal transit timescales in agreement with a growing database of diffusion-based ascent timescales of basaltic magmas, and demonstrate significant, systematic deviation of diffusion timescales calculated from natural zonation of rare earth elements in clinopyroxene and Ti in clinopyroxene and olivine.
In this contribution, we evaluate the applicability of short-wave infrared spectroscopy to characterizing mineral assemblages in palagonitized glaciovolcanic edifices at Cracked Mountain, a basaltic volcano within the Garibaldi Volcanic Belt, and Kima Kho, a basaltic tuya within the Northern Cordilleran Volcanic Province. Second-order evaluation of the approach was established through comparison with data obtained by semi-empirical X-ray diffraction methods. Reflectance spectra show an increase in the depth of water and hydroxyl bands in samples with increasing amounts of hydrated minerals and decreasing amounts of amorphous materials (as determined through X-ray diffraction), indicating that the relative strengths of H2O- and OH-related absorption features may be used as a proxy for the degree of palagonite alteration (hydrated minerals crystallized from basaltic glass). In addition, the full width at half maximum of the OH- and H2O-related absorption bands decreased with the formation of zeolites, indicating that the full width at half maximum of OH- and H2O-related features may be used to estimate the degree of crystallinity across the progressive palagonitization process. Finally, short-wave infrared spectroscopy revealed a decrease in band depth of water-related absorption features with no change in the full width at half maximum along the devitrification or alteration process that converts analcime to chabazite to wairakite, indicating that spectroscopy may be used to identify the final dehydration and cementation stages of palagonitization. Results show that the short-wave infrared spectroscopy method is more robust in identifying poorly crystalline hydrated samples, while X-ray diffraction methods are better suited to understanding the crystalline components of palagonite. Short-wave infrared spectroscopy is a remote sensing technique that has proven to successfully characterize the state of H2O in hydrated clay-rich material and thus may serve as an invaluable tool in identifying stages of palagonitization not only on subglacial edifices on Earth but also on off-planet environs, including the Martian surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.