Raised internal pressure in a distressed submarine increases the risk of bubble formation and decompression illness after submarine escape. The hypothesis that short periods of oxygen breathing before submarine escape would reduce decompression stress was tested, using Doppler-detectable venous gas emboli as a measure. Twelve goats breathed oxygen for 15 min at 0.1 MPa before exposure to a simulated submarine escape profile to and from 2.5 MPa (240 m/seawater), whereas 28 control animals underwent the same dive without oxygen prebreathe. No decompression sickness (DCS) occurred in either of these two groups. Time with high bubble scores (Kisman-Masurel >or=3) was significantly (P < 0.001) shorter in the prebreathe group. In a second series, 30 goats breathed air at 0.2 MPa for 6 h. Fifteen minutes before escape from 2.5 MPa, animals were provided with either air (n = 10), oxygen (n = 12), or carbogen (97.5% O(2) and 2.5% CO(2)) gas (n = 8) as breathing gas. Animals breathed a hyperoxic gas (60% O(2)-40% N(2)) during the escape. Two animals (carbogen group) suffered oxygen convulsions during the escape but recovered on surfacing. Only one case of DCS occurred (carbogen group). The initial bubble score was reduced in the oxygen group (P < 0.001). The period with bubble score of Kisman-Masurel >or=3 was also significantly reduced in the oxygen group (P < 0.001). Oxygen breathing before submarine escape reduces initial bubble scores, although its significance in reducing central nervous system DCS needs to be investigated further.
Cycling exercise prior to diving did not reduce the number of circulating VGE in comparison to control, in contrast to recent studies. A number of factors may be responsible for these findings, including type of exercise performed, wet diving experience, and disparity in Doppler measurement techniques.
Human extravehicular activity (EVA) is essential to space exploration and involves risk of decompression sickness (DCS). On Earth, the effect of microgravity on physiological systems is simulated in an experimental model where subjects are confined to a 6° head-down bed rest (HDBR). This model was used to investigate various resting and exercise regimen on the formation of venous gas emboli (VGE), an indicator of decompression stress, post-hyperbaric exposure. Eight healthy male subjects participating in a bed rest regimen also took part in this study, which incorporated five different hyperbaric exposure (HE) interventions made before, during and after the HDBR. Interventions i–iv were all made with the subjects lying in 6° HD position. They included (C1) resting control, (C2) knee-bend exercise immediately prior to HE, (T1) HE during the fifth week of the 35-day HDBR period, (C3) supine cycling exercise during the HE. In intervention (C4), subjects remained upright and ambulatory. The HE protocol followed the Royal Navy Table 11 with 100 min spent at 18 m (280 kPa), with decompression stops at 6 m for 5 min, and at 3 m for 15 min. Post-HE, regular precordial Doppler audio measurements were made to evaluate any VGE produced post-dive. VGE were graded according to the Kisman Masurel scale. The number of bubbles produced was low in comparison to previous studies using this profile [Kisman integrated severity score (KISS) ranging from 0–1], and may be because subjects were young, and lay supine during both the HE and the 2 h measurement period post-HE for interventions i–iv. However, the HE during the end of HDBR produced significantly higher maximum bubble grades and KISS score than the supine control conditions (p < 0.01). In contrast to the protective effect of pre-dive exercise on bubble production, a prolonged period of bed rest prior to a HE appears to promote the formation of post-decompression VGE. This is in contrast to the absence of DCS observed during EVA. Whether this is due to a difference between hypo- and hyperbaric decompression stress, or that the HDBR model is a not a good model for decompression sensitivity during microgravity conditions will have to be elucidated in future studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.