Wear behavior of three kinds of thermally sprayed coatings with similar hardness have been investigated under steady-state and dynamic loading tests. The steady-state loading tests were conducted on a reciprocating sliding device and the dynamic loading tests were conducted with a single-pendulum scratching device. Experimental results show that the wear mechanisms of the coatings under steady-state sliding friction testing are microcutting and microploughing, whereas the material losses under the dynamic impact scratch testing are mainly due to split cutting and fracture. Tribo-oxidization in the sliding process was found to have an influence on the wear behaviors of the thermally sprayed coatings. The results also indicated that wear resistance of thermally sprayed coatings can be correlated to hardness, plasticity, toughness, and cohesion. As far as the coatings of similar hardness were concerned, the wear resistance under steady-state loading was mainly due to the cohesion of the laminar structure of the coatings and the wear resistance under dynamic loading was mainly due to the toughness and deformation compatibility of the coatings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.