Nuclear factor κB (NF-κB) signaling is a central pathway that participates in a variety of key processes, including immunity, inflammation, cell growth and differentiation. The activity of NF-κB is strictly regulated by a cluster of proteins, and modifications of these proteins either promote or suppress signal transduction at various steps. Here we demonstrated that HSCARG suppresses TNFα-stimulated NF-κB signaling under physiological conditions. We elucidated the detailed mechanism through which HSCARG inhibits NF-κB activation. HSCARG interacts with NEMO and suppresses polyubiquitination of NEMO by interacting with the deubiquitinase USP7. HSACRG attenuates its inhibitory effect on NEMO ubiquitination in USP7 knockdown cells, and inhibition of NEMO polyubiquitination by USP7 is impaired in HSCARG−/− cells as well. Moreover, we demonstrated that USP7 is a negative regulator of TNFα-stimulated NF-κB activity. Altogether, our data indicate that HSCARG and USP7 function in concert in inhibiting polyubiquination of NEMO, thus inhibiting NF-κB activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.