Aerial vehicle detection has significant applications in aerial surveillance and traffic control. The pictures captured by the UAV are characterized by many tiny objects and vehicles obscuring each other, significantly increasing the detection challenge. In the research of detecting vehicles in aerial images, there is a widespread problem of missed and false detections. Therefore, we customize a model based on YOLOv5 to be more suitable for detecting vehicles in aerial images. Firstly, we add one additional prediction head to detect smaller-scale objects. Furthermore, to keep the original features involved in the training process of the model, we introduce a Bidirectional Feature Pyramid Network (BiFPN) to fuse the feature information from various scales. Lastly, Soft-NMS (soft non-maximum suppression) is employed as a prediction frame filtering method, alleviating the missed detection due to the close alignment of vehicles. The experimental findings on the self-made dataset in this research indicate that compared with YOLOv5s, the mAP@0.5 and mAP@0.5:0.95 of YOLOv5-VTO increase by 3.7% and 4.7%, respectively, and the two indexes of accuracy and recall are also improved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.