The determination of Dill parameters of thick resist is very important to improve simulation models of resist exposure and real world processes. A new extraction technique of Dill parameters based on spectroscopic ellipsometry in combination with an advanced resist exposure model is proposed for thick resist analysis. The complex refractive index of the resist is related to the relative concentration of the photoactive compound in the resist in order to describe the vertical distribution of the refractive index and the extinction coefficient. Moreover, Dill parameters are extracted by directly fitting the bleaching curves to the measured ellipsometry data. The new approach was investigated experimentally by spectroscopic ellipsometry measurements on AZ5214E resist with two moderate layer thickness values in order to verify the accuracy of the new method. Dill parameters were extracted by using this new technique and by applying resist samples subjected to different exposure doses. Possible reasons for the variation of Dill parameters depending on resist thickness are explained. Furthermore, advantages, limitations and potential improvements of the model are discussed. Finally, the impact of Dill parameter variation on image formation in the resist is demonstrated by applying the spectroscopic ellipsometer analysis results as input parameters to the lithography simulator Dr.LiTHO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.