Preparation of silver nanoparticles was carried out by semicontinuous reduction of Ag + ions at low temperatures. Silver nitrate was used as the Ag 0 precursor, the carboxymethyl cellulose (CMC) as stabilizer and primary reducing agent, and sodium borohydride as reducing agent. Weight ratios of 1 : 1 and 1 : 2 of AgNO 3 : CMC were used for carrying out the reactions. Silver nanoparticles were characterized by UV-VIS spectroscopy, transmission electronic microscopy (TEM), and X-ray diffraction (XRD). The formation of silver nanoparticles was confirmed by XRD spectroscopy and by the presence of an absorption peak around 400 nm in the UV-visible spectrum. Unimodal size distributions of spheroidal nanoparticles were observed by TEM. Greater productivities than those reported by other authors were obtained with the advantage of using a lower temperature and minor reaction times. By using a higher CMC/AgNO 3 weight ratio or a higher concentration of AgNO 3 , AgNPs with larger average size were produced. Antibacterial activity of AgNPs against S. aureus and E. coli was determined by the agar disk diffusion method. The higher the AgNPs concentration, the larger the inhibition zone. The minimum inhibitory concentration (MIC) of AgNPs against S. aureus and E. coli was 5 g/disk.
The high-yield synthesis of zinc oxide (ZnO) primary nanoparticles with high purity and with diameters between 6 and 22 nm using bicontinuous microemulsions is reported in this work. The ZnO nanoparticles were made by hydrolysis of Zn(NO3)2with NaOH aqueous solution and precipitation, followed by calcination of the precipitate. Higher yields and productivities of ZnO nanoparticles were obtained compared to values produced with w/o micremulsions reported in the literature. Particles were characterized by transmission electronic microscopy (TEM), X-ray diffraction, and atomic absorption spectroscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.