The contamination of the environment by explosives is a worldwide problem resulting in part from 2,4,6-trinitrotoluene (TNT) production. In situ phytoremediation is an appropriate, alternative, cost-effective technology to detoxify extended contamination of surface soil. The ability of rice (Oriza sativa) to both tolerate and assimilate 14C-labeled TNT was investigated over a 40-day exposure period. The germination rate decreased at 500 mg/kg TNT whereas root and shoot length increased significantly at high TNT concentrations, from 150 to 500 mg/kg. Rice took up TNT residues from soil and accumulated most in roots. Less than 25% of radioactivity taken up was translocated to aerial parts. Above 200 mg/kg TNT, the concentration of TNT residues in roots reached a maximum of approximately 0.7 mg/g. No TNT was found in plant extracts, good evidence for rapid metabolism of TNT. More than 60% of (14)C activity was found as unextractable residues in roots. It was concluded that TNT metabolized and subsequently sequestered by roots could not be translocated to aerial parts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.