Bronchial asthma is developed as an immune response to allergen challenges accompanied by inflammation and fibrosis implicated in airway remodeling. To reveal the causative implication of Cu-containing amino oxidases semicarbazide-sensitive amine oxidase (SSAO), DAO and lysyl oxidase (LOX) in BA development we used their irreversible inhibitor semicarbazide and guinea pig model of BA induced by ovalbumin. Semicarbazide was introduced to asthmatic animals via drink or inhalation. At the 16th week after disease induction, the increase in the activity of pro-inflammatory SSAO and DAO in plasma (1.6 and 2 times, respectively) was observed. The introduction of semicarbazide to asthmatic animals via drink or inhalation significantly decreased activities of these enzymes compared to the untreated asthmatic animals. A considerable increase in IL-13 content and LOX activity in the lung tissue of asthmatic animals were observed that evidenced airway inflammation and pulmonary fibrosis development. The uptake of semicarbazide by guinea pigs with bronchial asthma led to normalization of LOX activity. Histological studies confirmed that semicarbazide attenuated morphopathological changes in the lungs of asthmatic animals. Thus, the data obtained indicate the direct participation of the studied enzymes in the progression of pathological processes in atopic bronchial asthma as well as the potential use of semicarbazide as a drug in complex anti-asthmatic therapy. Keywords: atopic bronchial asthma, histaminase/diamine oxidase, IL-13, lysyl oxidase, nitric oxide, semicarbazide, semicarbazide sensitive amine oxidase
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.