Runt-related transcription factor 1 (RUNX1) is essential for normal hematopoiesis. RUNX1 mutations have rarely been reported in chronic myelomonocytic leukemia (CMML). We examined RUNX1 mutations in 81 patients with CMML at initial diagnosis. Mutational analysis was performed on bone marrow samples by direct sequencing of all reverse transcription PCR products amplified with three primer pairs that cover the entire coding sequences of RUNX1b. Thirty-two RUNX1 mutations were detected in 30 patients (37%); 23 mutants were located in the N-terminal part and 9 in the C-terminal region. The mutations consisted of 9 missense, 1 silent, 7 nonsense and 15 frameshift mutations. Two patients had biallelic heterozygous mutations. There was no difference in overall survival between patients with and without RUNX1 mutations, but a trend of higher risk of acute myeloid leukemia (AML) progression was observed in mutation-positive patients (16/30 vs 17/51, P ¼ 0.102), especially in patients with C-terminal mutations (P ¼ 0.023). The median time to AML progression was 6.8 months in patients with C-terminal mutations compared with 28.3 months in those without mutations (P ¼ 0.022). This study showed for the first time a high frequency of RUNX1 mutations in CMML. C-terminal mutations might be associated with a more frequent and rapid AML transformation.
The fusion transcripts of MLL rearrangement [MLL( þ )] in acute myeloid leukemia (AML) and their clinicohematologic correlation have not be well characterized in the previous studies. We used Southern blot analysis to screen MLL( þ ) in de novo AML. Reverse transcriptase-polymerase chain reaction was used to detect the common MLL fusion transcripts. cDNA panhandle PCR was used to identify infrequent or unknown MLL partner genes. MLL( þ ) was identified in 114 (98 adults) of 988 AML patients. MLL fusion transcripts comprised of 63 partial tandem duplication of MLL (MLL-PTD), 14 MLL-AF9, 9 MLL-AF10, 9 MLL-ELL, 8 MLL-AF6, 4 MLL-ENL and one each of MLL-AF1, MLL-AF4, MLL-MSF, MLL-LCX, MLL-LARG, MLL-SEPT6 and MLL-CBL. The frequency of MLL-PTD was 7.1% in adults and 0.9% in children (Po0.001). 11q23 abnormalities were detected in 64% of MLL/t11q23 and in none of MLL-PTD by conventional cytogenetics. There were no differences in remission rate, event-free survival and overall survival between adult MLL-PTD and MLL/t11q23 groups. Adult patients had a significantly poorer outcome than children. The present study showed that cDNA panhandle PCR can identify all rare or novel MLL partner genes. MLL-PTD was rare in childhood AML. MLL( þ ) adults had a poor outcome with no difference in survival between MLL-PTD and MLL/t11q23 groups.
The role of internal tandem duplication of fms-like tyrosine kinase 3 (FLT3/ITD), mutations at tyrosine kinase domain (FLT3/ TKD) and N-ras mutations in the transformation of myelodysplastic syndrome (MDS) to AML was investigated in 82 MDS patients who later progressed to AML; 70 of them had paired marrow samples at diagnosis of MDS and AML available for comparative analysis. Five of the 82 patients had FLT3/ITD at presentation. Of the 70 paired samples, seven patients acquired FLT3/ITD during AML evolution. The incidence of FLT3/ITD at diagnosis of MDS was significantly lower than that at AML transformation (3/70 vs 10/70, Po0.001). FLT3/ITD( þ ) patients progressed to AML more rapidly than FLT3/ITD(À) patients (2.570.5 vs 11.971.5 months, P ¼ 0.114). FLT3/ITD( þ ) patients had a significantly shorter survival than FLT3/ITD(À) patients (5.671.3 vs 18.071.7 months, P ¼ 0.0008). After AML transformation, FLT3/ITD was also associated with an adverse prognosis. One patient had FLT3/TKD mutation (D835Y) at both MDS and AML stages. Additional three acquired FLT3/TKD (one each with D835 H, D835F and I836S) at AML transformation. Five of the 70 matched samples had N-ras mutation at diagnosis of MDS compared to 15 at AML transformation (Po0.001), one lost and 11 gained N-ras mutations at AML progression. Coexistence of FLT3/TKD and N-ras mutations was found in two AML samples. N-ras mutations had no prognostic impact either at the MDS or AML stage. Our results show that one-third of MDS patients acquire activating mutations of FLT3 or N-ras gene during AML evolution and FLT3/ITD predicts a poor outcome in MDS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.