Chronic diseases may involve an “innate” response followed by an adaptive immune response, of a Th1 or Th2 variety. Little is known regarding the interactions of these responses. We hypothesized that TGF-β1 (innate response factor associated with wound repair) in combination with IL-13 (Th2 factor) might augment inflammatory processes associated with asthma. Airway fibroblasts were cultured from asthmatic subjects and normal controls. These fibroblasts were exposed to TGF-β1 and IL-13 alone or in combination, and eotaxin-1 expression and production were evaluated. At 48 h, eotaxin-1 production was markedly increased with the combination of TGF-β1 and IL-13 (p < 0.0001) compared with either stimulus alone. mRNA increased slightly at 1 h with IL-13 or TGF-β1 plus IL13, peaked, and became significantly increased over IL-13 alone at 24 h. Protein was measurable from 6 h with IL-13 and TGF-β1 plus IL-13, but greater levels were measured over time with the combination. Actinomycin ablated the increase in mRNA and protein seen with IL-13 alone and with TGF-β1 plus IL-13. Cycloheximide blocked the increase in mRNA at 6 h in both conditions, but also blocked the increase at 24 h with TGF-β1 plus IL-13. STAT-6 was rapidly activated with both IL-13 and the combination, without difference. Finally, eotaxin-1-positive fibroblasts were identified in severe asthma biopsies in greater numbers than in normals. These results support the concept that interactions of innate and adaptive immune systems may be important in promoting the tissue eosinophilia of asthma, particularly in those with more severe disease.
Tissue inhibitor of metalloproteinase (TIMP)-1 is a potent inhibitor of activated matrix metalloproteinases (MMPs) such as gelatinases and collagenases. TIMP-1 is induced by transforming growth factor-beta1 (TGF-beta1), but details regarding signaling pathways remain unclear. T-helper-2 cytokines also have profibrotic properties and can interact with TGF-beta. In the present study, we examined the effects of interleukin (IL)-13 (2,500 pM) on TGF-beta1 (200 pM)-induced expression of TIMP-1 mRNA and protein in primary human airway fibroblasts obtained from 57 human subjects. IL-13 alone had no effect on TIMP-1 mRNA or protein expression. However, IL-13 synergistically augmented TGF-beta1-induced TIMP-1 mRNA and protein expression (P < 0.001 vs. TGF-beta1 alone). The upregulation of TIMP-1 by the combination of TGF-beta1 and IL-13 involved increased transcription, with little effect on mRNA stabilization. Initial exploration of the pathways leading to the synergy determined that activation of the phosphatidylinositol 3-kinase (PI3K)-Akt pathway by IL-13 may have a negative effect on TIMP-1 production. The specific PI3K inhibitor LY-294002 in the presence of TGF-beta1, IL-13, or the combination of the two caused significant increases in TIMP-1 mRNA expression, while LY-294002 increased TIMP-1 protein levels in the presence of IL-13 alone. These results suggest that IL-13 augments TGF-beta1-induced profibrotic responses at both the mRNA and protein levels. Although IL-13 induced activation of PI3K-Akt, the activation did not contribute to the synergy observed with TGF-beta1 plus IL-13 in TIMP-1 expression and in fact may dampen it. The mechanisms behind the synergy remain to be determined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.