This paper shows the results of experiments to study the effect of the auxiliary voltage with frequency fi= 40000Hz on the stability of arc discharge at the limit mode of the welding process with single, coated electrodes. This effective method of connecting rolled and prefabricated elements of metal structures has found widespread use in their installation, manufacture and repair in the construction of various facilities: industrial and civil purposes, thermal and nuclear power facilities for responsible purposes. In this regard, the increase in the quality and technological, strength parameters of welds, the productivity of the manufacturing metal structure process, is largely associated with welding modes and an increase in the stability of arc discharge as an important element of the system: "power source-arc-welding tub-product." Improving the performance of the welding process under consideration is particularly important under mounting conditions in conjunction with its stability is an important task on the agenda. When performing the study, the following criteria and their values regarding the stability of the welding arc were taken into account, such as: lexpl - rupture length in mm, coefficients of variation: KV(Iwd) - welding current, KV(Uwd) - voltage, qt - constant time, as well as their numerical values were obtained. The obtained numerical values of the above criteria were obtained based on the analysis of graphs (oscillograms) of the dependence of the electric current (Iwd, A) and the voltage (Uwd, V) of the arc on the time of the process duration (t, sec). The obtained results of the analysis indicate an increase in stability, a decrease in inertia of the deviation of the resistance (conductivity) of the welding arc when the auxiliary voltage is applied with a frequency of fi = 40000Hz at the limit mode of welding with coated electrodes.
The article presents the results of an experimental study of the effect of an additional pulse-quasi-harmonic voltage with a frequency of 40 kHz on the structure of welded joints, the technological properties of a DC arc discharge in manual arc welding with covered electrodes. Obtaining a fine-grained structure of a welded joint is one of the conditions for increasing its technological and strength properties, and the operational reliability of the manufactured product as a whole.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.