Abstract-In this paper, we present our experiences in using symbolic model checking to analyze a specification of a software system for aircraft collision avoidance. Symbolic model checking has been highly successful when applied to hardware systems. We are interested in whether model checking can be effectively applied to large software specifications. To investigate this, we translated a portion of the state-based system requirements specification of Traffic Alert and Collision Avoidance System II (TCAS II) into input to a symbolic model checker (SMV). We successfully used the symbolic model checker to analyze a number of properties of the system. We report on our experiences, describing our approach to translating the specification to the SMV language, explaining our methods for achieving acceptable performance, and giving a summary of the properties analyzed. Based on our experiences, we discuss the possibility of using model checking to aid specification development by iteratively applying the technique early in the development cycle. We consider the paper to be a data point for optimism about the potential for more widespread application of model checking to software systems.
Determining the time separation of events is a fundamental problem in the analysis, synthesis, and optimization of concurrent systems. Applications range from logic optimization of asynchronous digital circuits to evaluation of execution times of programs for real-time systems. We present an e cient algorithm to nd exact (tight) bounds on the separation time of events in an arbitrary process graph without conditional behavior. The algorithm is based on a functional decomposition technique that permits the implicit evaluation of an in nitely unfolded process graph.
In this paper we present our results and experiences of using symbolic model checking to study the specification of an aircraft collision avoidance system. Symbolic model checking has been highly successful when applied to hardware systems. We are interested in the question of whether or not model checking techniques can be applied to large software specifications.To investigate this, we translated a portion of the finitestate requirements specification of TCAS II (Traffic Alert and Collision Avoidance System) into a form accepted by a model checker (SMV). We successfully used the model checker to investigate a number of dynamic properties of the system.We report on our experiences, describing our approach to translating the specification to the SMV language and our methods for achieving acceptable performance in model checking, and giving a summary of the properties that we were able to check. We consider the paper as a data point that provides reason for optimism about the potential for successful application of model checking to software systems. In addition, our experiences provide a basis for characterizing features that would be especially suitable for model checkers built specifically for analyzing software systems.The intent of this paper is to evaluate symbolic model checking of state-machine based specifications, not to evaluate the TCAS II specification. We used a preliminary version of the specification, the version 6.00, dated March, 1993, in our study. We did not have access to later versions, so we do not know if the properties identified here are present in later versions.
Abstract-In this paper, we present our experiences in using symbolic model checking to analyze a specification of a software system for aircraft collision avoidance. Symbolic model checking has been highly successful when applied to hardware systems. We are interested in whether model checking can be effectively applied to large software specifications. To investigate this, we translated a portion of the state-based system requirements specification of Traffic Alert and Collision Avoidance System II (TCAS II) into input to a symbolic model checker (SMV). We successfully used the symbolic model checker to analyze a number of properties of the system. We report on our experiences, describing our approach to translating the specification to the SMV language, explaining our methods for achieving acceptable performance, and giving a summary of the properties analyzed. Based on our experiences, we discuss the possibility of using model checking to aid specification development by iteratively applying the technique early in the development cycle. We consider the paper to be a data point for optimism about the potential for more widespread application of model checking to software systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.