In this study, we present a flexible, cost-effective, and accurate method to monitor landslides using a small unmanned aerial vehicle (UAV) to collect aerial photography. In the first part, we apply a Structure from Motion (SfM) workflow to derive a 3D model of a landslide in southeast Tasmania from multi-view UAV photography. The geometric accuracy of the 3D model and resulting DEMs and orthophoto mosaics was tested with ground control points coordinated with geodetic GPS receivers. A horizontal accuracy of 7 cm and vertical accuracy of 6 cm was achieved. In the second part, two DEMs and orthophoto mosaics acquired on 16 July 2011 and 10 November 2011 were compared to study landslide dynamics. The COSI-Corr image correlation technique was evaluated to quantify and map terrain displacements. The magnitude and direction of the displacement vectors derived from correlating two hillshaded DEM layers corresponded to a visual interpretation of landslide change. Results show that the algorithm can accurately map displacements of the toes, chunks of soil, and vegetation patches on top of the landslide, but is not capable of mapping the retreat of the main scarp. The conclusion is that UAV-based imagery in combination with 3D scene reconstruction and image correlation algorithms provide flexible and effective tools to map and monitor landslide dynamics.
Abstract:In this study, we used an Unmanned Aerial Vehicle (UAV) to collect a time series of high-resolution images over four years at seven epochs to assess landslide dynamics. Structure from Motion (SfM) was applied to create Digital Surface Models (DSMs) of the landslide surface with an accuracy of 4-5 cm in the horizontal and 3-4 cm in the vertical direction. The accuracy of the co-registration of subsequent DSMs was checked and corrected based on comparing non-active areas of the landslide, which minimized alignment errors to a mean of 0.07 m. Variables such as landslide area and the leading edge slope were measured and temporal patterns were discovered. Volumetric changes of particular areas of the landslide were measured over the time series. Surface movement of the landslide was tracked and quantified with the COSI-Corr image correlation algorithm but without ground validation. Historical aerial photographs were used to create a baseline DSM, and the total displacement of the landslide was found to be approximately 6630 m 3 .This study has demonstrated a robust and repeatable algorithm that allows a landslide's dynamics to be mapped and monitored with a UAV over a relatively long time series.
Large-scale hydrological models are nowadays mostly calibrated using observed discharge. As a result, a large part of the hydrological system, in particular the unsaturated zone, remains uncalibrated. Soil moisture observations from satellites have the potential to fill this gap. Here we evaluate the added value of remotely sensed soil moisture in calibration of large-scale hydrological models by addressing two research questions: (1) Which parameters of hydrological models can be identified by calibration with remotely sensed soil moisture? (2) Does calibration with remotely sensed soil moisture lead to an improved calibration of hydrological models compared to calibration based only on discharge observations, such that this leads to improved simulations of soil moisture content and discharge? A dual state and parameter Ensemble Kalman Filter is used to calibrate the hydrological model LISFLOOD for the Upper Danube. Calibration is done using discharge and remotely sensed soil moisture acquired by AMSR-E, SMOS, and ASCAT. Calibration with discharge data improves the estimation of groundwater and routing parameters. Calibration with only remotely sensed soil moisture results in an accurate identification of parameters related to land-surface processes. For the Upper Danube upstream area up to 40,000 km 2 , calibration on both discharge and soil moisture results in a reduction by 10-30% in the RMSE for discharge simulations, compared to calibration on discharge alone. The conclusion is that remotely sensed soil moisture holds potential for calibration of hydrological models, leading to a better simulation of soil moisture content throughout the catchment and a better simulation of discharge in upstream areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.