The increasing volume of unsolicited bulk e-mail (also known as spam) has generated a need for reliable antispam filters. Using a classifier based on machine learning techniques to automatically filter out spam email has drawn many researchers attention. In this paper we review some of the most popular machine learning methods (Bayesian classification, k-NN, ANNs, SVMs, Artificial immune system and Rough sets) and of their applicability to the problem of spam Email classification. Descriptions of the algorithms are presented, and the comparison of their performance on the SpamAssassin spam corpus is presented.
Abstract-as of late, Feature extraction in email classification assumes a vital part. Many Feature extraction algorithms need more effort in term of accuracy. In order to improve the classifier accuracy and for faster classification, the hybrid algorithm is proposed. This hybrid algorithm combines the Genetics Rough set with blind source separation approach (BSS-GRF). The main aim of proposing this hybrid algorithm is to improve the classifier accuracy for classifying incoming e-mails.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.