In the present note we consider a type of matrices stemming in the context of the numerical approximation of distributed order fractional differential equations (FDEs): from one side they could look standard, since they are, real, symmetric and positive definite. On the other hand they present specific difficulties which prevent the successful use of classical tools. In particular the associated matrix-sequence, with respect to the matrix-size, is ill-conditioned and it is such that a generating function does not exists, but we face the problem of dealing with a sequence of generating functions with an intricate expression. Nevertheless, we obtain a real interval where the smallest eigenvalue belongs, showing also its asymptotic behavior.We observe that the new bounds improve those already present in the literature and give a more accurate spectral information, which are in fact used in the design of fast numerical algorithms for the associated large linear systems, approximating the given distributed order FDEs. Very satisfactory numerical results are presented and critically discussed, while a section with conclusions and open problems ends the current note.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.