As the mesoscale eddies in oceans and semi-enclosed seas are significant in horizontal dispersion of pollutants, we investigate the seasonal variations of these eddies in the Persian Gulf (PG) that are usually generated due to seasonal winds and baroclinic instability. The sea surface height (SSH) data from 2010 to 2014 of AVISO are used to identify and track eddies, using the SSH-based method. Then seasonal horizontal dispersion coefficients are estimated for the PG, using the properties of eddies. The results show an annual mean of 78 eddies with a minimum lifetime of one week. Most of the eddies are predominantly cyclonic (59.1%) and have longer lifetimes and higher diffusion coefficients than the anti-cyclonic eddies. The eddy activity is higher in warm seasons, compared to that of cold seasons. As locations with high eddy diffusion coefficients are high-risk areas by using maps of horizontal eddy diffusion coefficients, perilous times and locations of the release of pollutants are specified to be within the longitude from 51.38°E to 55.28°E. The mentioned areas are located from the Strait of Hormuz towards the northeast of the PG, closer to Iranian coast. Moreover, July can be considered as the most dangerous time of pollution release.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.