This paper describes the use of the electrostatic element of an electrostatic/gecko-like adhesive to repel dust particles, which have been shown to significantly affect adhesion and reliability. The result is a non-destructive, non-contact cleaning method that can be used in conjunction with other cleaning techniques, many of which rely on physical contact between the fibrillar adhesive and substrate. The paper focuses on experimental evaluation of the repulsion of 100 μm glass beads as a function of wave shape, frequency, phase number and electrode direction in relation to the gecko-like features. Results show that a two-phase square wave with the lowest practically feasible frequency can remove 100 μm glass beads from a directional gecko-like adhesive with up to 70% efficiency. Finally, using the optimized electrostatic cleaning properties, results show an approximately 25% recovery in shear stress on a rough glass for three contaminated directional gecko-like adhesives after contact with a dusty table.
BackgroundAn autogenous arteriovenous fistula is the optimal vascular access for hemodialysis. In the case of brachiocephalic fistula, cephalic arch stenosis commonly develops leading to access failure. We have hypothesized that a contribution to fistula failure is low wall shear stress resulting from post-fistula creation hemodynamic changes that occur in the cephalic arch.MethodsTwenty-two subjects with advanced renal failure had brachiocephalic fistulae placed. The following procedures were performed at mapping (pre-operative) and at fistula maturation (8–32 weeks post-operative): venogram, Doppler to measure venous blood flow velocity, and whole blood viscosity. Geometric and computational modeling was performed to determine wall shear stress and other geometric parameters. The relationship between hemodynamic parameters and clinical findings was examined using univariate analysis and linear regression.ResultsThe percent low wall shear stress was linearly related to the increase in blood flow velocity (p < 0.01). This relationship was more significant in non-diabetic patients (p < 0.01) than diabetic patients. The change in global measures of arch curvature and asymmetry also evolve with time to maturation (p < 0.05).ConclusionsThe curvature and hemodynamic changes during fistula maturation increase the percentage of low wall shear stress regions within the cephalic arch. Low wall shear stress may contribute to subsequent neointimal hyperplasia and resultant cephalic arch stenosis. If this hypothesis remains tenable with further studies, ways of protecting the arch through control of blood flow velocity may need to be developed.
Given the current emphasis on accurate computational fluid dynamics (CFD) modeling of cardiovascular flows, which incorporates realistic blood vessel geometries and cardiac waveforms, it is necessary to revisit the conventional wisdom regarding the influences of non-Newtonian effects. In this study, patient-specific reconstructed 3D geometries, whole blood viscosity data, and venous pulses postdialysis access surgery are used as the basis for the hemodynamic simulations of renal failure patients with native fistula access. Rheological analysis of the viscometry data initially suggested that the correct choice of constitutive relations to capture the non-Newtonian behavior of blood is important because the end-stage renal disease (ESRD) patient cohort under observation experience drastic variations in hematocrit (Hct) levels and whole blood viscosity throughout the hemodialysis treatment. For this purpose, various constitutive relations have been tested and implemented in CFD practice, namely Quemada and Casson. Because of the specific interest in neointimal hyperplasia and the onset of stenosis in this study, particular attention is placed on differences in nonhomeostatic wall shear stress (WSS) as that drives the venous adaptation process that leads to venous geometric evolution over time in ESRD patients. Surprisingly, the CFD results exhibit no major differences in the flow field and general flow characteristics of a non-Newtonian simulation and a corresponding identical Newtonian counterpart. It is found that the vein's geometric features and the dialysis-induced flow rate have far greater influence on the WSS distribution within the numerical domain.
The surgical creation of an artery-vein connection via a Brachicephalic fistula (BCF) in patients with end stage renal disease (ESRD) provides a unique opportunity to study blood vessel response mechanisms to extreme hemodynamic conditions in relatively short timeframes. After BCF creation, the flow rate in the vein increases by an order of magnitude leading to separated flows and corresponding abnormally low, or negative, wall shear stress (WSS) in the curved arch segment of the cephalic vein. Locations of abnormally low WSS are shown to correlate with development of neointimal hyperplasia (NH) and subsequent stenosis. It is found that the stenosis, prior to a surgical intervention, restores the normal physiological WSS in the vein. As a result, this investigation provides evidence that the adaptation principle, known to apply in the arterial system, is also valid in the venous system. A novel graphical method is developed that combines clinical and computational data to assist in interpreting these physiological mechanisms including adaptation that lead to changes in vein geometry over time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.