To determine whether endurance exercise training can improve left ventricular systolic function in older men, 10 healthy sedentary men (64 +/- 3 years old; mean +/- SD) were studied. Training consisted of endurance exercise 4 +/- 0.3 days per week for 11.8 +/- 2.5 months at a progressively increasing intensity of 60-80% of maximal O2 uptake (Vo2max) with additional brief bouts of exercise equal to 93 +/- 13% of Vo2max. Vo2max increased from 29.6 +/- 4.1 to 37.2 +/- 5.7 ml/kg/min (p less than 0.001). Percent body fat was decreased (17.8 +/- 3.6% versus 15.6 +/- 3.6%; p less than 0.001). Before training, left ventricular ejection fraction, determined by electrocardiographic-gated equilibrium blood pool imaging, increased only modestly during exercise (from 66.3 +/- 6.7% at rest to 70.6 +/- 6.9% at peak exercise). After training, the increase in ejection fraction during exercise was significantly greater (from 67 +/- 4.8% at rest to 77.6 +/- 7.5% at peak exercise) than that observed before training and was similar to that in young sedentary men (64 +/- 7% at rest versus 74 +/- 9% at peak exercise). Although the changes in systolic pressure from rest to exercise were similar, end-systolic volume decreased significantly at peak exercise after (51 +/- 12 versus 38 +/- 13 ml; p less than 0.005) but not before (46 +/- 8 versus 43 +/- 13 ml; p = NS) training with a shift in the end-systolic volume-systolic blood pressure relation to the left compatible with enhanced inotropic state.(ABSTRACT TRUNCATED AT 250 WORDS)
Thermoregulation and cardiovascular drift were studied under conditions of prolonged exercise in a warm environment (dry bulb temperature 31.7 +/- 0.3 degrees C, rh 44.7 +/- 4.7%) during beta-adrenergic blockade. Fourteen subjects performed 90-min rides on a cycle ergometer at a work rate equivalent to 40% of their control maximal O2 uptake under each of three treatments provided in a randomized double-blind manner: atenolol (100 mg/day), propranolol (160 mg/day), and a placebo. Exercise during the propranolol trial resulted in significantly higher forearm vascular resistance values and significantly lower forearm blood flows (FBF) compared with the placebo trial. However, the significantly lower FBF during propranolol did not significantly alter the rectal temperature (Tre) response to prolonged exercise. In addition, both beta-blockers produced lower FBF for any given Tre, suggesting that beta-adrenergic blockade affects FBF through nonthermal factors. The slight differences in Tre, despite the large differences in FBF between the various treatments, are apparently the result of an enhanced sweat loss and a lower mean skin temperature during exercise with beta-blockade. The uncoupling of FBF and sweat loss provides evidence of independent regulation. The reduction in FBF at any given Tre was concomitant to lower blood pressure values during beta-blockade and suggests that baroreflexes provide significant input to the control of skin blood flow when both pressure and temperature maintenance are simultaneously challenged.
This study was designed to determine whether patients with McArdle's disease, who do not increase their blood lactate levels during and after maximal exercise, have a slow "lactacid" component to their recovery O2 consumption (VO2) response after high-intensity exercise. VO2 was measured breath by breath during 6 min of rest before exercise, a progressive maximal cycle ergometer test, and 15 min of recovery in five McArdle's patients, six age-matched control subjects, and six maximal O2 consumption- (VO2 max) matched control subjects. The McArdle's patients' ventilatory threshold occurred at the same relative exercise intensity [71 +/- 7% (SD) VO2max] as in the control groups (60 +/- 13 and 70 +/- 10% VO2max) despite no increase and a 20% decrease in the McArdle's patients' arterialized blood lactate and H+ levels, respectively. The recovery VO2 responses of all three groups were better fit by a two-, than a one-, component exponential model, and the parameters of the slow component of the recovery VO2 response were the same in the three groups. The presence of the same slow component of the recovery VO2 response in the McArdle's patients and the control subjects, despite the lack of an increase in blood lactate or H+ levels during maximal exercise and recovery in the patients, provides evidence that this portion of the recovery VO2 response is not the result of a lactacid mechanism. In addition, it appears that the hyperventilation that accompanies high-intensity exercise may be the result of some mechanism other than acidosis or lung CO2 flux.
To study the effects of cardiovascular fitness on hemodynamic responses to exercise during beta-adrenergic blockade (BAB), submaximal [60% of maximum O2 uptake (VO2max)] and maximal treadmill exercise data were collected in 11 trained (T, VO2max 63.3 ml X kg-1 X min-1, 26.8 yr) and 11 untrained (UT, VO2max 44.5 ml X kg-1 X min-1, 25.0 yr) male subjects. Subjects completed two maximal control tests followed by a randomized, double-blind series of maximal tests after 1-wk treatments with placebo (PLAC), propranolol (PROP, 160 mg/day, beta 1- and beta 2-blockade), and atenolol (ATEN, 100 mg/day, beta 1-blockade). Treatments were separated by 1-wk washout periods. At 60% of control VO2max T and UT subjects experienced no reductions in O2 uptake (VO2) with either drug. Submaximal heart rate (HR, beats/min) was 134.8 PLAC, 107.0 PROP, 107.9 ATEN (P less than 0.05 both drugs vs. PLAC) in T subjects and 141.1 PLAC, 106.1 PROP, and 105.0 ATEN (P less than 0.05 both drugs vs. PLAC) in UT subjects. Cardiac output (1/min) for T was 17.3 PLAC, 16.9 PROP, 16.5 ATEN (P less than 0.05 ATEN vs. PLAC in T only) and for UT it was 12.2 (PLAC), 11.7 (PROP), 11.5 (ATEN) (P less than 0.05 both drugs vs. PLAC in UT). Stroke volume increased from 129.8 ml (PLAC) to 158.6 (PROP) and 156.2 (ATEN) in T (P less than 0.05 both drugs vs. PLAC) and from 86.8 (PLAC) to 110.0 (PROP) and 109.8 (ATEN) (P less than 0.05 both drugs vs. PLAC) in UT. The increases in stroke volume (SV) were similar in both groups.(ABSTRACT TRUNCATED AT 250 WORDS)
The effect of beta-adrenergic blockade on the drift in O2 consumption (VO2 drift) typically observed during prolonged constant-rate exercise was studied in 14 healthy males in moderate heat at 40% of maximal O2 consumption (VO2max). After an initial maximum cycle ergometer test to determine the subjects' control VO2max, subjects were administered each of three medications: placebo, atenolol (100 mg once daily), and propranolol (80 mg twice daily), in a randomized double-blind fashion. Each medication period was 5 days in length and was followed by a 4-day washout period. On the 3rd day of each medication period, subjects performed a maximal cycle ergometer test. On the final day of each medication period, subjects exercised at 40% of their control VO2max for 90 min on a cycle ergometer in a warm (31.7 +/- 0.3 degrees C) moderately humid (44.7 +/- 4.7%) environment. beta-Blockade caused significant (P less than 0.05) reductions in VO2max, maximal minute ventilation (VEmax), maximal heart rate (HRmax), and maximal exercise time. Significantly greater decreases in VO2max, VEmax, and HRmax were associated with the propranolol compared with the atenolol treatment. During the 90-min submaximal rides, beta-blockade significantly reduced heart rate. Substantially lower values for O2 consumption (VO2) and minute ventilation (VE) were observed with propranolol compared with atenolol or placebo. Furthermore, VO2 drift and HR drift were observed under atenolol and placebo conditions but not with propranolol. Respiratory exchange ratio decreased significantly over time during the placebo and atenolol trials but did not change during the propranolol trial.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.