Classification is one of the data mining problems receiving enormous attention in the database community. Although artificial neural networks (ANNs) have been successfully applied in a wide range of machine learning applications, they are however often regarded as black boxes, i.e., their predictions cannot be explained. To enhance the explanation of ANNs, a novel algorithm to extract symbolic rules from ANNs has been proposed in this paper. ANN methods have not been effectively utilized for data mining tasks because how the classifications were made is not explicitly stated as symbolic rules that are suitable for verification or interpretation by human experts. With the proposed approach, concise symbolic rules with high accuracy, that are easily explainable, can be extracted from the trained ANNs. Extracted rules are comparable with other methods in terms of number of rules, average number of conditions for a rule, and the accuracy. The effectiveness of the proposed approach is clearly demonstrated by the experimental results on a set of benchmark data mining classification problems.
This paper proposes a TDMA-based multichannel medium access control (MAC) protocol for QoS provisioning in mobile ad hoc networks (MANETs) that enables nodes to transmit their packets in distributed channels. The IEEE 802.11 standard supports multichannel operation at the physical (PHY) layer but its MAC protocol is designed only for a single channel. The single channel MAC protocol does not work well in multichannel environment because of the multichannel hidden terminal problem. Our proposed protocol enables nodes to utilize multiple channels by switching channels dynamically, thus increasing network throughput. Although each node of this protocol is equipped with only a single transceiver but it solves the multichannel hidden terminal problem using temporal synchronization. The proposed energy efficient multichannel MAC (EM-MAC) protocol takes the advantage of both multiple channels and TDMA, and achieves aggressive power savings by allowing nodes that are not involved in communications to go into power saving "sleep mode". We consider the problem of providing QoS guarantee to nodes as well as to maintain the most efficient use of scarce bandwidth resources. Our scheme improves network throughput and lifetime significantly, especially when the network is highly congested. The simulation results show that our proposed scheme successfully exploits multiple channels and significantly improves network performance by providing QoS guarantee in MANETs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.