Reconstruction the phase front of a vortex laser beam is conducted by use of a Hartmann-Shack wavefront sensor. The vortex beam in the form of the Laguerre-Gaussian LG(0)(1) mode is generated with the help of a spiral phase plate. The new reconstruction technique based on measured wavefront gradients allows one to restore the singular phase surface with good accuracy, whereas the conventional least-squares approach fails.
Atmospheric gravity waves with very long crests (of 450–500 km length) and short horizontal wavelengths of about 20 km were observed in noctilucent clouds and were studied in detail for the first time. The gravity waves were slowly moving in opposite direction to the background wind indicating their forced generation outside the mesopause region. A ray‐tracing analysis using meteorological reanalysis and empirical atmospheric model data shows that a source of such peculiar gravity waves observed in noctilucent clouds was located near the tropopause and could be associated with the jet stream at altitudes 8–10 km. Two considered examples of very long wave crests confirm a significant role of the upper tropospheric jet stream as a source of gravity waves and reveal that these waves could propagate without critical levels to the mesopause in summertime.
We consider a unique case of a propagating internal gravity wave that has generated in situ a compact and thin layer of noctilucent clouds (NLC) at 82.7-85.2 km with a characteristic horizontal scale of 65-70 km, as observed in the Moscow region on the night of 18-19 July 2013. This particular transient isolated gravity wave together with the whole NLC layer suddenly appeared in the clear twilight sky and lasted about 1 h traveling eastward, which differs significantly from previously observed cases of gravity waves propagating through preexisting NLC layers. Our model studies demonstrate that the wave had a tropospheric source connected to the passage of an occluded front. The wave was likely generated due to strong horizontal wind shears at about 5 km altitude.
The phase correction of a vortex laser beam is undertaken in the closed-loop adaptive system including a Hartmann-Shack wavefront sensor with singular reconstruction technique and a bimorph piezoceramic mirror. After correction the vortex doughnutlike beam is focused into a beam with bright axial spot that considerably increases the Strehl ratio and optical system resolution. Since the phase break cannot be exactly reproduced on the flexible mirror surface, off-axis vortices appear in the far field at the beam periphery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.