We report a new 'spark erosion' technique for producing high-quality thermoelectric nanoparticles at a remarkably high rate and with enhanced thermoelectric properties. The technique was utilized to synthesize p-type Bi(0.5)Sb(1.5)Te(3) nanoparticles with a production rate as high as 135 g h(-1), using a relatively small laboratory apparatus and low energy consumption. The compacted nanocomposite samples made from these nanoparticles exhibit a well-defined, 20-50 nm size nanograin microstructure, and show an enhanced figure of merit, ZT, of 1.36 at 360 K. Such a technique is essential for providing inexpensive, oxidation-free nanoparticles which are required for the fabrication of high performance thermoelectric devices for power generation from waste heat, and for refrigeration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.