ABSTRACT:Forest cover monitoring is an important part of forest management in local or regional area. The structure and tones of forest can be identified in high spatial remote sensing images. When forests cover change, the spectral characteristics of forests is also changed. In this paper a method on object-based forest cover monitoring with data transformation from time series of high resolution images is put forward. First the NDVI difference image and the composite of PC3,PC4, PC5 of the stacked 8 layers of time series of high resolution satellites are segmented into homogeneous objects. With development of the object-based ruleset classification system, the spatial extent of deforestation and afforestation can be identified over time across the landscape. Finally the change accuracy is achieved with reference data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.