An analytic kinetic description of the toroidicity-induced Alfvén eigenmode (TAE) is presented. The theory includes electron parallel dynamics nonperturbatively, an effect that is found to strongly influence the character, and damping of the TAE−contrary to previous theoretical predictions. A parallel conductivity model that includes collisionless (Landau) damping on the passing electrons and collisional damping on both trapped and passing electrons is used. Together, these mechanisms damp the TAE more strongly than previously expected. This is because the TAE couples (or merges) with the kinetic Alfvén wave (KAW) within the gap region under conditions that depend on the gap size, the shear, the magnitude of the conductivity, and the mode numbers. The high damping could be relevant to recent experimental measurements of the TAE damping coefficient. In addition, the theory predicts a ‘‘kinetic’’ TAE, whose eigenfreqeuency lies just above the gap, whose existence depends on finite conductivity, and that is formed by the coupling of two KAW’s
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.