In the present paper, effects of welding current, welding time, electrode pressure and holding time on the weld nugget size were studied. A failure mechanism was proposed to describe both interfacial and pullout failure modes. This mechanism was confirmed by SEM investigations. In the light of this mechanism, the effect of welding parameters on static weld strength and failure mode was studied. Then, an analytical model was proposed to predict failure mode and to estimate minimum nugget diameter (critical diameter) to ensure pullout failure mode in shear tensile test. On the contrary to existing industrial standards, in this model, critical nugget diameter is attributed to metallurgical characterisation of material (weld nugget hardness to failure location hardness ratio), in addition to sheet thickness. For a given sheet thickness, decreasing H WN H FL increases interfacial failure mode tendency. The results of this model were compared with experimental data and also with the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.