This study aims to evaluate the quality of boar sperm that was refrigerated for 14 days at 17 ºC with three extenders. For this study, samples from four boars were collected twice a week using the gloved-hand technique. After collection, only ejaculates showing total motility of 75% or greater were submitted to the refrigeration process. Ejaculates were diluted in Androhep, MR-A® or Reading. Each portion was kept for two hours at 22 ºC, then sperm motility was assessed through contrast microscopy. Sperm mitochondrial activity, viability and acrosome integrity were measured by the flow cytometric technique. The remaining diluted semen was maintained at 17 ºC for 336 h, and the same analysis being repeated every 48 h. Semen diluted in Androhep revealed no significant quality deterioration in percentage of live spermatozoa during refrigeration. However, after 144 h, viability decreased significantly for MR-A® and Reading (63.3% ± 7.0 and 66.4% ± 6.2, respectively), and after 336 h, this decrease was accentuated (56.3% ± 3.9 and 18.4% ± 6.2, respectively, for MR-A® and Reading). On average, for all three extenders, acrosome integrity values did not differ statistically up to 144 h, ranging from 48.3 ± 2.3 for MR-A® to 62.4 ± 3.2 for Androhep. Then values decreased towards the end of the experiment, with Androhep always presented the higher values, while Reading resulted in the lowest values (46.3 ± 3.2 and 5.6 ± 1.4, respectively). No significant changes in mitochondrial membrane potential were observed during the refrigeration period. Results of this study indicate that Androhep achieves the best results for the various parameters studied over time.
The use of frozen semen in pig industry is limited by problems with viability and fertility compared to cooled semen. Part of the decrease in motility and fertility, associated to cryopreservation, may be due to oxidative damage from excessive formation of reactive oxygen species (ROS). Frozen thawed boar spermatozoa are still considered suboptimal due to the low conception rates and smaller litters after artificial insemination. The relatively low fertility of frozen thawed boar semen is associated with many factors including cytotoxicity of the cryoprotectant, osmotic stress, injuries due to ice formation during freezing and thawing, cold shock damages and even inter and intra variations present among boars. Therefore, this study was conducted to determine the impact of conjugated linoleic acid (trans-10, cis-12; CLA) supplementation in the cryopreservation extender frozen-thawed boar on semen quality parameters. Semen was collected from three boars (three ejaculates per boar) which were subjected to cryopreservation, without any supplementation (control) or supplemented with 50 µm CLA, and then the semen was frozen using a controlled rate freezer. Before freezing, and after thawing, the sperm motility was assessed, microscopically and viability and acrosome integrity were assessed using the flow cytometry technique. Regarding live spermatozoa, no significant differences (P > 0.05) were observed among treatments. However, statistical differences (P < 0.05) were found between refrigerated and frozen-thawed semen. Both sperm viability and motility diminished after thawing. Significant differences (P < 0.05) in motility were found not only between refrigerated semen and frozen-thawed group, but also between treatments. In acrosome integrity, no significant differences (P > 0.05) were observed among treatments. In conclusion, the addition of trans-10, cis-12 isomer of conjugated linoleic acid, in the concentration used in the cryopreservation media, showed no advantages on the post-thaw boar sperm viability and integrity.
In this study, the effect of conjugated linoleic acid (10 trans, 12 cis) (CLA) on refrigerated boar sperm quality parameters up to 14 days at 17°C was assessed. Semen was extended in Androhep and divided into four treatments supplemented with CLA (25, 50, 100 and 200 μm) and control group, then kept for 2 h at 22°C. Afterwards an aliquot of each treatment was removed, and mitochondrial activity, viability, lipid membrane peroxidation (LPO) and stability of the sperm plasma membrane were assessed by flow cytometry. The remaining extended semen was maintained at 17°C until 336 h, repeating the same analysis every 48 h. Regarding percentage of live spermatozoa, no statistical differences were observed among treatments up to 96 h. After this time, viability decreased significantly (p < 0.05) for CLA concentrations of 100 and 200 μm. Despite these results, there was an individual response to CLA. Although in the control group, the boar A presented better results when compared with the other boars, especially at concentrations of 50 and 100 μm boar B showed significantly higher results (p < 0.05). Supplementation with CLA improved (p < 0.05) LPO, but not the mitochondrial membrane potential of sperm. The highest two CLA concentrations showed to be toxic for sperm as all results were lower than the observed for the control. In conclusion, CLA at 50 μm seems to be an efficient concentration for reducing the oxidative stress, decreasing LPO, maintaining viability, membrane stability and mitochondrial potential on refrigerated boar spermatozoa.
This study aimed to evaluate the nutritional potential of unconventional plants: Pittosporum undulatum, Cryptomeria japonica, Acacia melanoxylon, Hedychium gardnerianum, Eucalyptus globulus, and Arundo donax, as an alternative roughage for ruminants. Chemical composition, gross energy, in vitro gas production, kinetics, and digestibility of dry matter and organic matter in vitro were determined for each species. The obtained results showed variations between the studied forages concerning crude protein, and the different fiber fractions: NDF, ADF, and ADL The P. undulatum with a relative food value of 92.12%, showed a significant difference compared to the other species under study. After 96 h of incubation, the plants that produced, on average, less in vitro gas were A. melanoxylon and E. globulus. Among the studied species, A. donax stands out as the species that presented the highest gas production, with 31.53 mL. 200 mg−1 DM, observing a significant difference compared to the other plants. This is a reflection of it having the highest DMD (60.44 ± 1.22%) as well. P. undulatum was the species with the longest colonization time (4.8 h). Among the plants studied, we highlight P. undulatum as presenting a good quality in the RFV index and A. donax as having good digestibility. Both can be used as roughage in periods of greater shortage of pastures.
This study evaluated the effects of sodium hydroxide (NaOH) treatment on the nutritional value of Arundo donax (A. donax). Its ultimate goal was to develop an environmentally friendly animal feed alternative that could be produced sustainably while combatting the spread of A. donax. Plants were collected and dried at 60 °C in an oven with controlled air circulation to determine the dry matter (DM) content. The dry plant material was then sprinkled with an NaOH solution of 2%, 4%, 6%, or 8% and placed in leak-proof containers for four weeks. The chemical and in vitro digestibility properties of treated and untreated A. donax samples were analysed in triplicate. The treatment led to significant decreases in neutral detergent fibre (NDF) from 81.06% DM to 69.39% DM, acid detergent fibre (ADF) from 46.99% DM to 43.19% DM, and ether extract (EE) from 2.06% DM to 1.39% DM, in the untreated samples compared with those treated with 8% NaOH, respectively. In addition, DM digestibility increased from 24.61% to 33.78%, ash content from 11.75% DM to 19.92% DM, and ADL from 7.43% M to 15.38% DM. Thus, treatment of A. donax with an 8% solution of NaOH concentration improved its nutritional value.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.