A blob of Newtonian fluid is sandwiched in the narrow gap between two plane parallel surfaces so that, a t some initial instant, its plan-view occupies a simply connected domain D0. Further fluid, with the same material properties, is injected into the gap at some fixed point within D0, so that the blob begins to grow in size. The domain D occupied by the fluid at some subsequent time is to be determined.It is shown that the growth is controlled by the existence of an infinite number of invariants of the motion, which are of a purely geometric character. For sufficiently simple initial domains D0 these allow the problem to be reduced to the solution of a finite system of algebraic equations. For more complex initial domains an approximation scheme leads to a similar system of equations to be solved.
It has been argued that the no-slip boundary condition, applicable when a viscous fluid flows over a solid surface, may be an inevitable consequence of the fact that all such surfaces are, in practice, rough on a microscopic scale: the energy lost through viscous dissipation as a fluid passes over and around these irregularities is sufficient to ensure that it is effectively brought to rest. The present paper analyses the flow over a particularly simple model of such a rough wall to support these physical ideas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.