In MRI, the flow of blood in the patient is subjected to a strong static magnetic field (B(0)). The movement of charge carriers in a magnetic field causes a magnetofluid dynamic (MFD) effect that induces a voltage across the artery. This induced voltage distorts the ECG signal of the patient and appears as an elevation of the T-wave of the ECG signal. Flow of blood through the aortic arch is perpendicular to the magnetic field and coincides with the occurrence of the T-wave of the ECG. Based on these facts, it is proposed that the elevation in the T-wave occurs because of the voltage induced across the aortic arch. In this paper, the elevation is computed mathematically using the equations of MFD. A method is developed to measure this induced voltage based on discretization of the aortic arch and measuring the blood flow profile in the aorta. The results are compared to the ECG signals measured in humans in the bore of 1.5 T imaging magnet. The computed ECG signals at the 12 leads are very similar to the measured values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.