Several theoretical predictions of the mass flow rate of granular media discharged from a silo are based on the spontaneous development of a free-fall arch region, the existence of which is still controversial. In this Letter, we study experimentally and numerically the particle flow through an orifice placed at the bottom of 2D and 3D silos. The implementation of a coarse-grained technique allows a thorough description of all the kinetic and micromechanical properties of the particle flow in the outlet proximities. Though the free-fall arch does not exist as traditionally understood-a region above which particles have negligible velocity and below which particles fall solely under gravity action-we discover that the kinetic pressure displays a well-defined transition in a position that scales with the outlet size. This universal scaling explains why the free-fall arch picture has served as an approximation to describe the flow rate in the discharge of silos.
We present a hybrid GPU-CPU implementation of an accurate discrete element model for a system of ellipsoids. The ellipsoids have three translational degrees of freedom, their rotational motion being described through quaternions and the contact interaction between two ellipsoids is described by a force which accounts for the elastic and dissipative interactions. Further we combine the exact derivation of contact points between ellipsoids (Wang et al. in Computing 72(1-2):235-246, 2004) with the advantages of the GPU-NVIDIA parallelization strategy (Owens et al. in Comput Graph Forum 26:80-113, 2007). This novelty makes the analytical algorithm computationally feasible when dealing with several thousands of particles. As a benchmark, we simulate a granular gas of frictionless ellipsoids identifying a classical homogeneous cooling state for ellipsoids. For low dissipative systems, the behavior of the granular temperature indicates that the cooling dynamics is governed by the elongation of the ellipsoids and the restitution coefficient. Our outcomes comply with the statistical mechanical laws and the results are in agreement with previous findings for hard ellipsoids (Bereolos et al. in J Chem Phys 99:6087, 1993; Villemot and Talbot in Granul Matter 14:91-97, 2012). Additionally, new insight is provided namely suggesting that the mean field description of the cooling dynamics of elongated particles is conditioned by the particle shape and the degree of energy equipartition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.