Context. Recent studies on Kappa distribution functions invoked in space plasma applications have emphasized two alternative approaches which may assume the temperature parameter either dependent or independent of the power-index κ. Each of them can obtain justification in different scenarios involving Kappa-distributed plasmas, but direct evidences supporting any of these two alternatives with measurements from laboratory or natural plasmas are not available yet. Aims. This paper aims to provide more facts on this intriguing issue from direct fitting measurements of suprathermal electron populations present in the solar wind, as well as from their destabilizing effects predicted by these two alternating approaches. Methods. Two fitting models are contrasted, namely, the global Kappa and the dual Maxwellian-Kappa models, which are currently invoked in theory and observations. The destabilizing effects of suprathermal electrons are characterized on the basis of a kinetic approach which accounts for the microscopic details of the velocity distribution. Results. In order to be relevant, the model is chosen to accurately reproduce the observed distributions and this is achieved by a dual Maxwellian-Kappa distribution function. A statistical survey indicates a κ-dependent temperature of the suprathermal (halo) electrons for any heliocentric distance. Only for this approach the instabilities driven by the temperature anisotropy are found to be systematically stimulated by the abundance of suprathermal populations, i.e., lowering the values of κ-index.
In the solar wind electron velocity distributions reveal two counter-moving populations which may induce electromagnetic (EM) beaming instabilities known as heat flux instabilities. Depending on plasma parameters two distinct branches of whistler and firehose instabilities can be excited. These instabilities are invoked in many scenarios, but their interplay is still poorly understood. An exact numerical analysis is performed to resolve the linear Vlasov-Maxwell dispersion and characterize these two instabilities, e.g., growth rates, wave frequencies and thresholds, enabling to identify their dominance for conditions typically experienced in space plasmas. Of particular interest are the effects of suprathermal Kappa-distributed electrons which are ubiquitous in these environments. The dominance of whistler or firehose instability is highly conditioned by the beam-core relative velocity, core plasma beta and the abundance of suprathermal electrons. Derived in terms of relative drift velocity the instability thresholds show an inverse correlation with the core plasma beta for the whistler modes, and a direct correlation with the core plasma beta for the firehose instability. Suprathermal electrons reduce the effective (beaming) anisotropy inhibiting the firehose modes while the whistler instability is stimulated.
In space plasmas kinetic instabilities are driven by the beaming (drifting) components and/or the temperature anisotropy of charged particles. The heat-flux instabilities are known in the literature as electromagnetic modes destabilized by the electron beams (or strahls) aligned to the interplanetary magnetic field. A new kinetic approach is proposed here in order to provide a realistic characterization of heat-flux instabilities under the influence of electrons with temperature anisotropy. Numerical analysis is based on the kinetic Vlasov-Maxwell theory for two electron counter-streaming (core and beam) populations with temperature anisotropies, and stationary, isotropic protons. The main properties of electromagnetic heat-flux instabilities are found to be markedly changed by the temperature anisotropy of electron beam A b = T ⊥ /T = 1, leading to stimulation of either the whistler branch if A b > 1, or the firehose branch for A b < 1. For a high temperature anisotropy whistlers switch from heat-flux to a standard regime, when their instability is inhibited by the beam.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.