One generally considers the conducting filament in ZnO-based valence change memristors (VCMs) as an aggregation of oxygen vacancies. Recently, the transmission electron microscopy observation showed the filament is composed of a Zn-dominated ZnOx. In this study, careful analysis of the temperature dependence of the ON state resistance demonstrates that the formation/rupture of a Zn filament is responsible for the resistive switching in ZnO VCMs. Cu/ZnO/Pt memristive devices can be operated in both VCM and ECM (electrochemical metallization memristor) modes by forming different metal filaments including Cu, Zn and a coexistence of these two filaments. The device operation can be reversibly switched between ECM and VCM modes. The dual mode operation capability of Cu/ZnO/Pt provides a wide choice of select devices for constructing memristive crossbar architectures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.