<p><strong>Abstract.</strong> Remote sensing and image fusion have recognized many important improvements throughout the recent years, especially fusion of optical and synthetic aperture radar (SAR), there are so many published papers that worked on fusing optical and SAR data which used in many application fields in remote sensing such as Land use Mapping and monitoring. The goal of this survey paper is to summarize and synthesize the published articles from 2013 to 2018 which focused on the fusion of Optical and synthetic aperture radar (SAR) remote sensing data in a systematic literature review (SLR), based on the pre-published articles on indexed database related to this subject and outlining the latest techniques as well as the most used methods. In addition this paper highlights the most popular image fusion methods in this blending type. After conducting many researches in the indexed databases by using different key words related to the topic “fusion Optical and SAR in remote sensing”, among 705 articles, chosen 83 articles, which match our inclusion criteria and research questions as results ,all the systematic study ‘ questions have been answered and discussed.</p>
Determining an impervious surface is one of the most important topics of remote sensing because of its great role in providing information that benefits decision-makers in urban planning, sustainable development goals, and environmental protection. In recent years, a great development in this field has occurred due to the huge improvement in the algorithms and techniques that are used to map impervious surfaces. In this paper, the deep learning technique has been implemented to investigate the extraction of impervious surfaces in Marrakesh city, based on Landsat images. 9000 polygons and 13840 points have been taken to prepare label data by random forest in Google Earth Engine (GEE). In addition, all preprocessing steps for remote sensing images have been implemented in GEE. An artificial neural network (ANN) has been used to determine impervious surfaces. After training and testing the proposed network on Landsat image datasets, precision, accuracy, recall, and F1-score matrix scores were 0.79, 0.98, 0.87, and 0.82, respectively. The experimental results show that this method is efficient and precise for mapping the impervious surfaces of Marrakesh city.
Abstract. In recent years, deep convolutional neural networks (CNNs) algorithms have demonstrated outstanding performance in a wide range of remote sensing applications, including image classification, image detection, and image segmentation. Urban development, as defined by urban expansion, mapping impervious surfaces, and built-up areas, is one of these fascinating issues. The goal of this research is to explore at and summarize the deep learning approaches used in urbanization. In addition, several of these methods are highlighted in order to provide a comprehensive overview and comprehension of them, as well as their pros and downsides.
<p><strong>Abstract.</strong> Studies on the change in occupation and land-use are of great importance in order to understand landscape dynamics in the process of agricultural land degradation, urbanization, desertification, deforestation and all change in the landscape global of a region. The most effective procedure to measure the degree of land-cover and land-use changes is the multi-date study. For this purpose, the aim of this work is to analyze the current evolution of land-use and land-cover (LULC) using remote sensing techniques, in order to better understand this evolution. For this purpose, a diachronic approach is applied to satellite images acquired in 1987 to 2018 of Ma’rib city Yemen. The LULC maps we obtained were produced from different image analysis procedures (non-supervised classification and recode technique) to map the land-use and land-cover. The objective of this study is to apply reproducibly and generalizable a predefined nomenclature to different scenes of satellite images. The first step consists in interpreting the radiometric classes obtained by non-supervised classification so as to form the classes of the thematic nomenclature. An improvement of the classification is then obtained by using the recode technique which makes it possible to correctly reassign the previously badly classified pixels of the satellite images classification. Land-cover maps obtained from remote sensing were used to quantify the rate of change (Tc) and (Tg) of area occupied by each class. The results will indicate the most changeable period and the percentage of overall change in the study area (Ma’rib Yemen), and helped to identify and characterize the spatial and temporal evolution of land use in the district over a period of thirty-one years (1987 to 2018). They reveal that annual average rates of decline for the water body is &minus;83.5% and &minus;9.96% for the sandy land. However, it was observed an increase in built-up area 365.52% and farm land 324.52% classes.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.