With increasing interest in the use of polymeric nanofibres for biomedical applications such as composite materials and tissue scaffolding, accurate determination of their mechanical properties is essential. Fibre orientation and the stiffness of individual fibres determine the overall elastic modulus of nanofibrous materials. However, accurate measurements of the elastic properties of single fibres are challenging at the nanoscale, and distinguishing between results arising from competing models can be difficult. We report here on investigations of the Young’s modulus of single poly(ε-caprolactone) (PCL) electrospun nanofibres by measuring the deflection of fibres due to a loading force applied by an atomic force microscope (AFM). Although such testing is often performed with the tacit assumption that bending resistance alone is responsible for the fibre response, we found that consistent results could only be obtained if the overall fibre stretch is taken into account. The Young’s modulus we measured for electrospun PCL fibres with diameters ranging from 100 to 400 nm was 0.48±0.03 GPa, which is similar to the modulus of bulk PCL, with no apparent dependence on diameter. Our findings highlight the importance of the assumptions used in the analysis of bending data, as discounting the effect of axial stretch and pre-existing tension typically lead to an overestimate of the Young’s modulus.
This study examines the piezoresistive behavior of polymer-conducting filler composites. Piezoresistive composites of Poly(dimethyl-siloxane)-Multiwall Carbon Nanotube (PDMS-MWNT) were prepared using a direct mixing approach. The dispersion and the electrical conductivity of the composites were characterized at various MWNT compositions. The piezoresistive behavior under compression was measured using an Instron Universal Tester/Digital Sourcemeter combination. Negative piezoresistive behavior was observed signifying a reducing mean inter-particulate distance in the composites. Moreover, the sensitivities increased at two compositional values of 3 and 5 wt% MWNT in PDMS, which was associated with the state of MWNT dispersion observed. Tensile piezoresistive behavior of the PDMS-MWNT adhered on a fabric substrate was also characterized. Positive piezoresistive values, indicating increasing inter-particulate distance, were observed. Significant challenges in the implementation of PDMS-MWNT as sensory materials in electronic-textile applications were observed as a result of this study and have been discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.