The production of alkaline protease by an Aspergillus flavus strain isolated in our laboratory by solid-substrate fermentation for use as a depilation agent and the influence of various factors on enzyme production are reported. The optimum conditions for maximum production were a growth temperature of 32°C, 63% substrate moisture, and a growth period of 48 h. Enrichment with corn steep liquor or Casitone increased productivity. Scaling-up experiments indicated that flask-scale results could be reproduced at 1 and 30 kg of substrate. The enzyme preparation exhibited maximum activity at both pH 7.5 and pH 9.5. The use of this enzyme as a depilation agent was confirmed by experiments in a tannery.
The antifungal activity of polyvinylpyrrolidone (PVP)-stabilized quantum-sized silver nanoparticles (SNPs) against the growth of Candida albicans has been demonstrated in the present study. C. albicans is a known opportunistic human pathogen causing superficial and systemic infections. Research data carried out on C. albicans so far have shown unequivocally that it develops resistance against conventional antifungal drugs and that the infections it causes are difficult to cure with conventional antifungal agents. Hence, it is urgent to find newer materials for the treatment of infections caused by C. albicans that must be safe for the host. PVP-capped SNPs were synthesized, and its surface plasmon band was observed at 410 nm. The growth of C. albicans was markedly inhibited when the cells were incubated with SNP. The minimum inhibitory concentration (MIC) of SNP was determined as 70 ng/ml, and this value is relatively lower when compared with the conventionally used antifungal drugs such as amphotericin B (0.5 μg/ml), fluconazole (0.5 μg/ml), and ketoconazole (8 μg/ml). The viability of SNP-treated cells was checked by measuring the metabolic activity using XTT assay. Field emission scanning electron microscopic (FE-SEM) and transmission electron microscopic (TEM) analyses of the cells treated with SNP have lost the structural integrity to a greater extent.
Advanced backcross introgression lines (BILs) developed from crosses of Oryza sativa var. Swarna/O. nivara accessions were grown and evaluated for yield and related traits. Trials were conducted for consecutive three seasons in field conditions in a randomized complete block design with three replications. Data on yield traits under irrigated conditions were analyzed using the Additive Main Effect and Multiplicative Interaction (AMMI), Genotype and Genotype × Environment Interaction (GGE) and modified rank-sum statistic (YSi) for yield stability. BILs viz., G3 (14S) and G6 (166S) showed yield stability across the seasons along with high mean yield performance. G3 is early in flowering with high yield and has good grain quality and medium height, hence could be recommended for most of the irrigated locations. G6 is a late duration genotype, with strong culm strength, high grain number and panicle weight. G6 has higher yield and stability than Swarna but has Swarna grain type. Among the varieties tested DRRDhan 40 and recurrent parent Swarna showed stability for yield traits across the seasons. The component traits thousand grain weight, panicle weight, panicle length, grain number and plant height explained highest genotypic percentage over environment and interaction factors and can be prioritized to dissect stable QTLs/ genes. These lines were genotyped using microsatellite markers covering the entire rice genome and also using a set of markers linked to previously reported yield QTLs. It was observed that wild derived lines with more than 70% of recurrent parent genome were stable and showed enhanced yield levels compared to genotypes with higher donor genome introgressions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.