A binary decoder is a common component of software development tools such as instruction set simulators, disassemblers and debuggers. The efficiency of the decoder can have a significant impact on the efficiency of these software tools. Automated synthesis of efficient binary decoders is therefore necessary for retargetable software tool development frameworks targeting the rapidly growing field of applicationspecific processor design. This paper describes a decoder synthesis algorithm that translates a simple instruction pattern specification into efficient binary decoders in C under given memory constraints. The algorithm constructs a decision tree with carefully chosen decoding primitives and cost models. As demonstrated through two case studies, the synthesized decoders achieve efficiency comparable to hand-coded decoders with ensured correctness. The algcrithm has no limitation on the input instruction patterns and it requires only the least amount of knowledge about the instruction encoding. Therefore it can be used with any machine description scheme containing instruction encoding information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.