We calculate the equation of state of nuclear matter based on the general analysis of the grand canonical partition function in the $S$-matrix framework. In addition to the low mass stable particles and their two-body scattering channels considered earlier, the calculation includes systematically all the higher mass particles and their exited states as well as the scattering channels formed by any number of these species. We estimate the latter contribution by resonances in all the channels. The resulting model-independent virial series for pressure gets substantial contribution from the heavy particles and the channels containing them. The series converges for larger values of baryon density than found earlier.Comment: Version to appear in PRC, Rapid Communication
We derive thermal QCD sum rules for the correlation function of two vector currents in the rho-meson channel. It takes into account the leading non-perturbative corrections from the additional operators, which appear due to the breakdown of Lorentz invariance at finite temperature. The mixing of the new operators has a drastic effect on their coefficients. The thermal average of all the operators can be related to that of the quark condensate and the energy density. The sum rules then yield the temperature dependence of the parameters of the $\rho$-meson, namely its mass and coupling to the vector current. Our result is that these parameters are practically independent of temperature at least up to a temperature of 125 MeV.Comment: 11 pages, revtex, 2 figure
High energy laboratories are performing experiments in heavy ion collisions to explore the structure of matter at high temperature and density. This elementary book explains the basic ideas involved in the theoretical analysis of these experimental data. It first develops two topics needed for this purpose, namely hadron interactions and thermal field theory. Chiral perturbation theory is developed to describe hadron interactions and thermal field theory is formulated in the real-time method. In particular, spectral form of thermal propagators is derived for fields of arbitrary spin and used to calculate loop integrals. These developments are then applied to find quark condensate and hadron parameters in medium, including dilepton production. Finally, the non-equilibrium method of statistical field theory to calculate transport coefficients is reviewed. With technical details explained in the text and appendices, this book should be accessible to researchers as well as graduate students interested in thermal field theory.
We extend an earlier, configuration space method to find the Wilson coefficients of operators appearing in the short distance expansion of thermal correlation functions of different quark bilinears. Considering all the different correlation functions, there arise, up to dimension four, two new operators, in addition to the two appearing already in the vacuum correlation functions. They would contribute substantially to the QCD sum rules, when the temperature is not too low.Comment: 6 pages, Late
A modified perturbation scheme is set up for a scalar field theory at finite temperature. Here the mass term is replaced by an effective mass, to be determined by calculating the two-point function at zero momentum. Using the real-time formulation we calculate the latter to second order in this modified scheme. The result is used to calculate the critical temperature in a Higgs model to the same order.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.