With the goal of developing a low-cost scintillator-based photon counting detector (PCD) with high dose efficiency suitable for CT, the light transport characteristics in LYSO:Ce detectors containing Laser Induced Optical Barriers (LIOB) are simulated. Light confinement and light collection efficiencies (LCE) are studied for a variety of optical barrier patterns and properties (refractive index (RI) and barrier/crystal interface roughness). Up to 80% confinement is achievable with a simple pixel pattern with one barrier wall separating each pixel coupled one-toone to a photodetector (PD) pixel. Confinement is heavily dependent on barrier properties, and rough interfaces and higher RI results in increased cross-talk. Three approaches to enhance performance beyond the basic pattern are explored: 1) Multiple barrier walls separating each crystal pixel. 2) Introduction of long and short range confinement by having multiple crystal pixels per PD pixel. 3) Combination of LIOB and Laser Ablation. 1) Is effective for rough interfaces where confinement can be increased by up to 24% for double compared to single walls. 2) Results in high confinement in the pixel centered on the PD pixel, but lower confinement closer to the PD edge. This feature may be explored to achieve spatial resolution beyond the PD pixel size using light sharing based positioning algorithms. 3) Can increase confinement for smooth interfaces using a smooth ablation in the bottom part of the crystal. A general trend across all configurations is a trade-off between light confinement and LCE. The LCE attainable is found comparable to that for mechanically pixelated arrays. While the confinement achievable with LIOB is always lower compared to a mechanically pixelated array, the former may offer a high level of flexibility in terms of detector design. This, in combination with the possibility to fabricate sub-mm pixels in a cost-effective manner, makes LIOB a promising technology for scintillator-based PCDs.
In most humans, the superior temporal sulcus (STS) shows a rightward depth asymmetry. This asymmetry can not only be observed in adults, but is already recognizable in the fetal brain. As the STS lies adjacent to brain areas important for language, STS depth asymmetry may represent an anatomical marker for language abilities. This study investigated the prognostic value of STS depth asymmetry in healthy fetuses for later language abilities, language localization, and language-related white matter tracts. Less right lateralization of the fetal STS depth was significantly associated with better verbal abilities, with fetal STS depth asymmetry explaining more than 40% of variance in verbal skills 6–13 years later. Furthermore, less right fetal STS depth asymmetry correlated with increased left language localization during childhood. We hypothesize that earlier and/or more localized fetal development of the left temporal cortex is accompanied by an earlier development of the left STS and is favorable for early language learning. If the findings of this pilot study hold true in larger samples of healthy children and in different clinical populations, fetal STS asymmetry has the potential to become a diagnostic biomarker of the maturity and integrity of neural correlates of language.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.