Our understanding of the climatic teleconnections that drove ice-age cycles has been limited by a paucity of well-dated tropical records of glaciation that span several glacial–interglacial intervals. Glacial deposits offer discrete snapshots of glacier extent but cannot provide the continuous records required for detailed interhemispheric comparisons. By contrast, lakes located within glaciated catchments can provide continuous archives of upstream glacial activity, but few such records extend beyond the last glacial cycle. Here a piston core from Lake Junín in the uppermost Amazon basin provides the first, to our knowledge, continuous, independently dated archive of tropical glaciation spanning 700,000 years. We find that tropical glaciers tracked changes in global ice volume and followed a clear approximately 100,000-year periodicity. An enhancement in the extent of tropical Andean glaciers relative to global ice volume occurred between 200,000 and 400,000 years ago, during sustained intervals of regionally elevated hydrologic balance that modified the regular approximately 23,000-year pacing of monsoon-driven precipitation. Millennial-scale variations in the extent of tropical Andean glaciers during the last glacial cycle were driven by variations in regional monsoon strength that were linked to temperature perturbations in Greenland ice cores1; these interhemispheric connections may have existed during previous glacial cycles.
Erosion of landscapes underlaid by permafrost can transform sediment and nutrient fluxes, surface and subsurface hydrology, soil properties, and rates of permafrost thaw, thus changing ecosystems and carbon emissions in high latitude regions with potential implications for global climate. However, future rates of erosion and sediment transport are difficult to predict as they depend on complex interactions between climatic and environmental parameters such as temperature, precipitation, permafrost, vegetation, wildfires, and hydrology. Thus, despite the potential influence of erosion on the future of the Arctic and global systems, the relations between erosion‐rate and these parameters, as well as their relative importance, remain largely unquantified. Here we quantify these relations based on a sedimentary record from Burial Lake, Alaska, one of the richest datasets of Arctic lake deposits. We apply a set of bi‐ and multi‐variate techniques to explore the association between the flux of terrigenous sediments into the lake (a proxy for erosion‐rate) and a variety of biogeochemical sedimentary proxies for paleoclimatic and environmental conditions over the past 25 cal ka BP. Our results show that erosion‐rate is most strongly associated with temperature and vegetation proxies, and that erosion‐rate decreases with increased temperature, pollen‐counts, and abundance of pollen from shrubs and trees. Other proxies, such as those associated with fire frequency, aeolian dust supply, mass wasting and hydrologic conditions, play a secondary role. The marginal effects of the sedimentary‐proxies on erosion‐rate are often threshold dependent, highlighting the potential for strong non‐linear changes in erosion in response to future changes in Arctic conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.