Partial discharge (PD) detection using a UHF (ultra high frequency) band signal is a well known advanced insulation diagnosis method in gas insulated switchgear (GIS), and has been actively studied. Detailed investigation of electromagnetic (EM) wave propagation inside the GIS tank is required for significant improvement of detecting PD signal by UHF method. When practically applying the UHF method to GIS insulation diagnostics, it is necessary to examine the effects of GIS components such as circuit breakers, isolators and disconnectors on EM wave propagation properties. In this paper, attention is paid to the effects of a disconnecting part of a high voltage (HV) conductor like a circuit breaker or a disconnector in GIS.To examine the effects of disconnecting part, the gap length of the disconnecting part was set as parameter, and waveforms and frequency spectra of the propagation PD-induced EM wave were measured with UHF sensors. For the purpose of discussing the effects of the disconnecting part theoretically, a finite difference time domain (FD-TD) simulation was also carried out. The experimental results show that the PD-induced wave could propagate through the disconnecting part with higher frequency components over the cutoff frequency components of TE11 mode for disconnecting part, i.e. cylindrical shape formed by GIS tank without HV conductor. The propagation of the lower frequency components below the TE11 mode depended on the gap length of the disconnecting part.Index Terms -Gas insulated switchgear (GIS), partial discharge (PD), electromagnetic (EM) wave, UHF (ultra high frequency) method, TE11 mode, cutoff frequency, insulation diagnosis, disconnecting part, finite difference time domain (FD-TD).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.