Previous detections of individual astrophysical sources of neutrinos are limited to the Sun and the supernova 1987A, whereas the origins of the diffuse flux of high-energy cosmic neutrinos remain unidentified. On 22 September 2017, we detected a high-energy neutrino, IceCube-170922A, with an energy of ~290 tera-electron volts. Its arrival direction was consistent with the location of a known γ-ray blazar, TXS 0506+056, observed to be in a flaring state. An extensive multiwavelength campaign followed, ranging from radio frequencies to γ-rays. These observations characterize the variability and energetics of the blazar and include the detection of TXS 0506+056 in very-high-energy γ-rays. This observation of a neutrino in spatial coincidence with a γ-ray-emitting blazar during an active phase suggests that blazars may be a source of high-energy neutrinos.
Masuda et al. found a hard X-ray source well above a soft X-ray loop in impul sive compact-loop flares near the limb. This indicates that main energy release is going on above the soft X-ray loop, and suggests magnetic reconnection occurring above the loop, similar to the classical model for two ribbon flares. If the reconnection hypothesis is correct, a hot plasma (or plasmoid) ejection is expected to be associated with these flares. Using the images taken by the soft X-ray telescope aboard Yohkoh, we searched for such plasma ejections in eight impulsive compact-loop flares near the limb, which are selected in an unbiased manner and include also the Masuda flare, 1992 January 13 flare. We found that all these flares were associated with X-ra y plasma ejections high above the sof t X-ra y loop and the velocity of ejections is within the range of 50-400 km s Ϫ1. This result gives further support for magnetic reconnection hypothesis of these impulsive compact-loop flares.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.