Biological scatterers, consisting of birds and insects, may become trapped near the circulation center of tropical cyclones, particularly if a well-developed eyewall is present. These scatterers may be observed using weather radar, where they may appear to the radar operator as areas of light precipitation. Polarimetric radar characteristics of these scatterers, informed by additional observations of known bioscatter, include a combination of very high differential reflectivity (3-7.9 dB) and very low copolar correlation coefficient (0.3-0.8). Polarimetric radar observations of bioscatter are presented for Hurricane Irene (2011) and Hurricane Sandy (2012). In these storms, the bioscatter signature first appeared at the 0.58 elevation angle at a distance of 100-120 km from the radar. The signature appeared on successively higher tilts as the circulation center neared the radar, and its areal coverage in constant altitude plan position indicator (CAPPI) slices was primarily governed by the distribution of convection in the eye and by the timing of landfall. The highest altitude at which the signature appears may represent the inversion level within certain tropical cyclone eyes. For Hurricane Irene, inland observations of oceanic bird species support biological transport. Knowledge of the bioscatter signature has value to meteorologists monitoring tropical cyclones within the range of a polarimetric radar, possible value for estimating inversion height changes within the eyes of well-structured tropical cyclones, and value to biologists who wish to estimate the magnitude of biological transport in tropical cyclones.
Supercell thunderstorms produce a variety of hazards, including tornadoes. A supercell will often exist for some time prior to producing a tornado, while other supercells never become tornadic. In this study, a series of hypotheses is tested regarding the ability of S-band polarimetric radar fields to distinguish pretornadic from nontornadic supercell storms. Several quantified polarimetric radar metrics are examined that are related to storm inflow, updraft, and hailfall characteristics in samples of 19–30 pretornadic and 18–31 nontornadic supercells. The results indicate that pretornadic supercells are characterized by smaller hail extent and echo appendages with larger mean drop size. Additionally, differential reflectivity ZDR column size is larger and less variable in the pretornadic storms in the 25–30 min prior to initial tornadogenesis. Many of the results indicate relatively small polarimetric differences that will likely be difficult to translate to operational use. Hail extent and ZDR column size, however, may exhibit operationally useful differences between pretornadic and nontornadic supercells.
Polarimetric radar signatures have been related to the typical evolution of supercell storms, including through tornado life cycles. Now that polarimetric radar observations are available for a large sample of supercell storms, time series of new radar metrics can be derived. These metrics can be compared with phases of known tornado life cycles in an effort to develop new methods of anticipating tornadoes and to increase understanding of storm-scale structural and microphysical changes through supercell and tornado life cycles. In this paper, radar metrics including measures of differential reflectivity ZDR columns, ZDR arcs, polarimetrically inferred hailfall regions, and mean value of copolar correlation coefficient ρhv in the echo appendage are compared to the tornado life cycle and to storm-maximum tornado intensity in a sample of 35 tornadic supercells. It is shown that these radar metrics may change repeatedly and thus can be used to distinguish tornadic and nontornadic periods in single supercell storms, tornadogenesis from tornado demise times, and modes of storm evolution relative to tornadoes (e.g., if a storm produces one tornado or several). The polarimetric radar metrics are nearly as predictive of tornado intensity as commonly used measures of environmental variability for this sample.
Values of polarimetric radar variables may vary substantially between and through tornadic debris signature (TDS) events. Tornadoes with higher intensity ratings are associated with higher average and extreme values of reflectivity factor at horizontal polarization ZHH and lower values of copolar cross-correlation coefficient ρhv. Although values of these variables often fluctuate through reported tornado life cycles, ZHH repeatably decreases and ρhv repeatably increases across the volume scan immediately following reported tornado demise. Land cover has a relatively small effect on values of the polarimetric variables within TDSs, although near-radar urban TDSs may exhibit relatively high ZHH values. TDS areal extent is typically larger aloft than near the surface, although this trend may reverse in the most intense tornadoes. Maximum altitude to which a TDS is visible is more strongly a function of tornado intensity than of land cover or ambient shear and instability. Debris often disappears once lofted but may also be observed to spread out downstream with the storm-relative flow or to fall out along the parent storm’s northwest flank in a debris fallout signature (DFS). DFS characteristics, although variable, most commonly include ZHH values of 30–35 dBZ, ρhv values of 0.60–0.80, and values of differential reflectivity ZDR that are repeatably near 0 dB.
Classic supercell storms occur in a generally well understood environment characterized by instability and vertical wind shear. Within this broadly favorable environment, large day-to-day variability in environmental parameters may lead to widely varying radar presentation of storms. Of interest here is whether specific storm structures exhibit repeatable characteristics in similar environments and whether radar presentation can be predicted with knowledge of environmental characteristics. Specifically, this paper focuses on (i) updraft characteristics inferred using differential reflectivity ZDR columns, (ii) characteristics of storm-relative inflow inferred using ZDR arcs, and (iii) areal extent and cyclicality of polarimetrically inferred hailfall at low levels. Variability of these radar features is compared among storms in similar environments and among a larger subset of storms across highly varying environments. The similarity of storms in similar and different environments is quantified, and tornadic and nontornadic storms are compared. Associations between inferred updraft, inflow, and hailfall characteristics and environmental variables are discussed. Storm features generally exhibit greater similarity among storms in similar environments than across environments, although exceptions occur. The results indicate that many radar features of classic supercells may be useful to learn about microphysical variability across environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.