It is hypothesized that perennial freshwater tidal wetland habitat exports inorganic and organic material needed to support the estuarine food web and to create favorable habitat for aquatic organisms in San Francisco Estuary. It is also hypothesized that most of the material flux in this river-dominated region is controlled by river flow. The production and export of material by Liberty Island were measured and compared using discrete monthly and continuous (15 min) measurements of a suite of inorganic and organic materials and flow between 2004 and 2005. Seasonal material flux was estimated from monthly discrete data for inorganic nutrients, suspended solids and salts, organic carbon and nitrogen and phytoplankton and zooplankton group carbon and chlorophyll a and pheophytin pigment. Estimates of material flux from monthly values were compared with measured daily material flux values for chlorophyll a concentration, salt and suspended solids obtained from continuous measurements (15 min) using YSI water quality sondes. Phytoplankton carbon produced within the wetland was estimated by in situ primary productivity. Most inorganic and organic materials were exported from the wetland on an annual basis, but the magnitude and direction varied seasonally. Dissolved inorganic nutrients such as nitrate, soluble phosphorus, total phosphorus and silica as well as total suspended solids were exported in the summer while total and dissolved organic carbon were exported in the winter. Salts like chloride and bromide were exported in the fall. Chlorophyll a and pheophytin were exported in the fall and associated with diatom and cyanobacteria carbon. Mesozooplankton carbon was dominated by calanoid copepods and exported most of the year except summer. Continuous sampling revealed high hourly and daily variation in chlorophyll a, salt and total suspended solids flux due to high frequency changes in concentration and tidal flow. In fact, tidal flow rather than river discharge was responsible for 90% or more of the material flux of the wetland. These studies indicate that freshwater tidal wetlands can be a source of inorganic and organic material but the export of material is highly variable spatially and temporally, varies most closely with tidal flow and requires high frequency measurements of both tidal flow and material concentration for accurate estimates.
The loss of inorganic and organic material export and habitat produced by freshwater tidal wetlands is hypothesized to be an important contributing factor to the long-term decline in fishery production in San Francisco Estuary. However, due to the absence of freshwater tidal wetlands in the estuary, there is little information on the export of inorganic and organic carbon, nutrient or phytoplankton community biomass and the associated mechanisms. A single-day study was conducted to assess the potential contribution of two small vegetated ponds and one large open-water pond to the inorganic and organic material flux within the freshwater tidal wetland Liberty Island in San Francisco Estuary. The study consisted of an intensive tidal day (25.5 h) sampling program that measured the flux of inorganic and organic material at three ponds using continuous monitoring of flow, chlorophyll a, turbidity and salt combined with discrete measurements of phytoplankton community carbon, total and dissolved organic carbon and nutrient concentration at 1.5 h intervals. Vegetated ponds had greater material concentrations than the open water pond and, despite their small area, contributed up to 81% of the organic and 61% of the inorganic material flux of the wetland. Exchange between ponds was important to wetland flux. The small vegetated pond in the interior of the wetland contributed as much as 72–87% of the total organic carbon and chlorophyll a and 10% of the diatom flux of the wetland. Export of inorganic and organic material from the small vegetated ponds was facilitated by small-scale topography and tidal asymmetry that produced a 40% greater material export on ebb tide. The small vegetated ponds contrasted with the large open water pond, which imported 29–96% of the inorganic and 4–81% of the organic material into the wetland from the adjacent river. This study identified small vegetated ponds as an important source of inorganic and organic material to the wetland and the importance of small scale physical processes within ponds to material flux of the wetland.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.