A study was made of the in vivo detectability of a pH-sensitive, imidazolidine spin probe, and the efficacy of low-frequency electron spin resonance (ESR)-based techniques for pH measurement in vitro and in vivo in rats. The techniques used were longitudinally-detected ESR (LODESR) and field-cycled dynamic nuclear polarization (FC-DNP) for in vitro and in vivo measurements, and radiofrequency (RF)-and X-band ESR for comparisons in vitro. The spin probe was hexamethyl imidazolidine (HMI) with a pK of 4.6. All techniques detected HMI. Detection by FC-DNP implies coupling between the free radical and solvent water spins. Separations between the three spectral lines of the nitroxide radical, relative to measurement frequency, were consistent with theory. The overall spectrum width from unprotonated HMI (pH > pK) was greater than that from protonated agent (pH < pK). This was observed in vitro and in vivo. Longer-term studies showed that HMI is detectable and has the same spectral width (i.e., is at the same pH) up to 2 hr after gavage into the stomach, although the magnitude of the signal decreases rapidly during the first hour. The imidazoline and imidazolidine nitroxide radicals show a reversible pH effect in their electron spin resonance (ESR) spectra. This was described in 1982 (1,2), when it was demonstrated that the N-3 atom of the ring can take up a proton in an acidic environment, resulting in a change in the unpaired electron density at the N-1 atom (3) (see Fig. 1). Studies of this effect were recently reviewed by Khramtsov and Volodarsky (4). The compound 2,2,3,4,5,5-hexamethylimidazolidine-1-yloxy (referred to here as HMI), when studied by ESR spectroscopy at Xband (9.2 GHz) or lower frequencies, has a smaller hyperfine coupling constant in an acid environment (i.e., when protonated) than it does in a more alkaline environment. When measured by ESR, this effect demonstrates a pK (the pH at which half the agent is protonated) of about 4.6 (5). Khramtsov and Volodarsky (4) showed that at high measurement frequencies (140 GHz), at pH 4.7, the spectrum from HMI consists of two partially superimposed triplets: one deriving from the protonated HMI(H ϩ ) state, and one from the unprotonated state. At lower frequencies (X-band and below), however, the triplets overlap more closely and appear as single low-and mid-field lines with a partial doubling of the high-field line in the X-band spectrum (4). At 1.1 GHz there is a broadening of both high-and lowfield lines (6). When the spectrum is observed at a pH value other than its pK, one of the triplets dominates and the spectrum appears as a simple triplet with a narrower splitting for HMI in acid solution and a wider splitting at higher pH. The relative proportion of the two triplets making up the spectrum varies with pH over a substantial range, permitting the effect to be used as an ESR-based pH meter (1). The effect has been observed to occur at very low measurement frequencies (280 MHz) in solutions of HMI studied in vitro (5), and may therefore be of value for...
The use of RF (100 to 300 MHz) PEDRI and CW-EPR techniques allows the in vivo study of large animals such as whole rats and rabbits. Recently a PEDRI instrument was modified to also allow CW-EPR spectroscopy with samples of similar size and under the same experimental conditions. In the present study, this CW-EPR and PEDRI apparatus was used to assess the feasibility of the detection of a pyrrolidine nitroxide free radical (2,2,5,5,-tetramethylpyrrolidine-1-oxyl-3-carboxylic acid, PCA) in the abdomen of rats. In particular, we have shown that after the PCA administration (4 mmol kg(-1) b.w.): (i) the PCA EPR linewidth does not show line broadening due to concentration effects; (ii) a similar PCA up-take phase is observed by EPR and PEDRI; and (iii) the PCA half-lives in the whole abdomen of rats measured with the CW-EPR (T1/2=26+/-4 min, mean+/-sd, n=10) and PEDRI (T1/2=29+/-4 min, mean+/-sd, n=4) techniques were not significantly different (p > 0.05). These results show, for the first time, that information about PCA pharmacokinetics obtained by CW-EPR is the same as that from PEDRI under the same experimental conditions.
We have designed and constructed RF coil assemblies and the appropriate instrumentation for combining proton NMR imaging with LODESR imaging. This has enabled us to collect sequential images from the same sample using both methods. The coil assembly consists of a crossed ellipse coil for LODESR and proton NMR signal detection and a saddle coil for excitation of the ESR resonance. Images have been collected of phantoms containing copper sulphate and Tempol solutions. NMR images were collected (4.3 min) and within 30 s LODESR data collection started (collection time 2.5 min). Only the Tempol solutions are visible in the LODESR images.
Scintillation detectors developed for PET traditionally use relatively thick crystals coupled to photomultiplier tubes. To ensure good efficiency the crystals typically measure between 10 and 30 mm thick. Detectors also require good spatial resolution so the scintillator is normally made up of a densely packed array of long thin crystals. In this paper, we present a novel design in which the detection crystal is divided into a number of layers along its length with an avalanche photo diode (APD) inserted between each layer. With thin layers of crystal, it is possible to use a continuous rather than a pixelated crystal. The potential advantages of this design over a conventional PMT-based detector are: (i) improved light collection efficiency, (ii) reduced dependency on dense crystal to achieve good stopping power, (iii) ease of crystal manufacture, (iv) reduced detector dead-time and increased count rate, and (v) inherent depth of interaction. We have built a four-layer detector to test this design concept using Hamamatsu S8550 APD arrays and LYSO crystals. We used the centre 16 pixels of each of the arrays to give an active area of 9.5 mm x 9.5 mm. Four crystals 9.5 mm x 9.5 mm were used with thickness increasing from 2 mm at the front to 2.5 mm, 3.1 mm and 4.3 mm at the back, to ensure a similar count rate in each layer. Calculations for the thickness of the four layers were initially made using the linear attenuation coefficient for photons at 511 keV of LYSO. Experimental results and further simulation demonstrated that a correction to the thickness of each layer should be considered to take into account the scattered events. The energy resolution for each of the layers at 511 keV was around 15%, coincidence-timing resolution was 2.2 ns and the special resolution was less than 2 mm using a statistical-based positioning algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.