We report the most precise observations to date concerning the spin structure of magnetic skyrmions in a nanowedge specimen of cubic B20 structured FeGe. Enabled by our development of advanced differential phase contrast (DPC) imaging (in a scanning transmission electron microscope (STEM)) we have obtained high spatial resolution quantitative measurements of skyrmion internal spin profile. For hexagonal skyrmion lattice cells, stabilised by an out-plane applied magnetic field, mapping of the in-plane component of magnetic induction has revealed precise spin profiles and that the internal structure possesses intrinsic six-fold symmetry. With increasing field strength, the diameter of skyrmion cores was measured to decrease and accompanied by a nonlinear variation of the lattice periodicity. Variations in structure for individual skyrmions across an area of the lattice were also studied utilising a new increased sensitivity DPC detection scheme and a variety of symmetry lowering distortions were observed. To provide insight into fundamental energetics we have constructed a phenomenological model, with which our experimental observations of spin profiles and field induced core diameter variation are in good agreement with predicted structure in the middle of the nanowedge crystal. In the vicinity of the crystal surfaces, our model predicts the existence of in-plane twisting distortions which our current experimental observations were not sensitive to. As an alternative to the requirement for as yet unidentified sources of magnetic anisotropy, we demonstrate that surface states could provide the energetic stabilisation needed for predomination over the conical magnetic phase.
We have imaged Néel skyrmion bubbles in perpendicularly magnetised polycrystalline multilayers patterned into 1 µm diameter dots, using scanning transmission x-ray microscopy. The skyrmion bubbles can be nucleated by the application of an external magnetic field and are stable at zero field with a diameter of 260 nm. Applying an out of plane field that opposes the magnetisation of the skyrmion bubble core moment applies pressure to the bubble and gradually compresses it to a diameter of approximately 100 nm. On removing the field the skyrmion bubble returns to its original diameter via a hysteretic pathway where most of the expansion occurs in a single abrupt step. This contradicts analytical models of homogeneous materials in which the skyrmion compression and expansion are reversible. Micromagnetic simulations incorporating disorder can explain this behaviour using an effective thickness modulation between 10 nm grains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.