The purpose of this study is to produce Fe-2Cu-2Ni-0.7Mo-XC steels by means of the powder metallurgy at different sintering temperatures. The mechanical properties of sintered steels have recently reached a level equivalent to that of steels produced by other processes. The static and dynamic mechanical properties of parts made of sintered steel depend on density and microstructure. Many process parameters such as initial composition, alloying elements, atmosphere, time, sintering temperature, and nitrocarburizing influence the microstructure of steel parts. The compacts' preparation involves powder mixing, cold pressing at 500 MPa, and sintering at 1250 C within the H 2 atmosphere for 2 hours and 25 min. The influence of sintering temperature on both hardness and microstructure of the steel is investigated. In this study, sintered Fe-2Cu-2Ni-0.7Mo-XC-type steels are developed. The impact of nitrocarburizing on this structure is evaluated. Microscopy, SEM, and destructive testing are used for characterization of the sintered steels.
Powder metallurgy was mainly used to produce automobile parts such as beds self-lubricating bearings, and gear wheels. In order to investigate the effect of porosity on the mechanical and tribological properties of sintered steel, specimens with 10%, 20%, and 30% porosity were produced on samples of parallelepipedic form, with technical of iron powders that has been used in a large industrial area. Sintering was carried out at 1100 ° C for 2 hours in an argon atmosphere. Metallographic studies such as pore formation, saturated area, and the nitrided layer analyses were performed by microscopy and optical microscopy. It was found that the irregular pore formation tendencies increase with an increase in porosity (%). Furthermore, an increase in porosity has proven to decrease the mechanical properties and increase the wear trace area and the friction coefficient of sintered steel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.