PREFACE Animals assemble and maintain a diverse, yet host-specific gut microbial community. In addition to characteristic microbial compositions along the longitudinal axis of the intestines, discrete bacterial communities form in microhabitats, such as the gut lumen, colon mucus layers and colon crypts. In this Review, we examine how spatial distribution of symbiotic bacteria among physical niches in the gut impacts the development and maintenance of a resilient microbial ecosystem. We consider novel hypotheses for how nutrient selection, immune activation and other mechanisms control the biogeography of bacteria in the gut and discuss the relevance of this spatial heterogeneity to health and disease.
Mucosal surfaces are in continuous contact with microbes. Toll-like receptors (TLRs) mediate recognition of microbial molecules to eliminate pathogens. In contrast, we demonstrate here that the prominent gut commensal, Bacteroides fragilis, activates the TLR pathway on T lymphocytes to establish host-microbial symbiosis. TLR2 deletion on CD4+ T cells results in anti-microbial immune responses that reduce B. fragilis colonization of a unique mucosal niche during homeostasis. A symbiosis factor (PSA) of B. fragilis activates TLR2 directly on Foxp3+ regulatory T cells through a novel process to engender mucosal tolerance. Remarkably, B. fragilis lacking PSA is unable to restrain host immune responses and is defective in niche-specific mucosal colonization. Therefore, unlike pathogens whose TLR ligands trigger inflammation, some commensal bacteria exploit the TLR pathway to actively suppress immune reactions. We propose that the immunologic distinction between pathogens and the microbiota is mediated not solely by host mechanisms, but also through specialized molecules evolved by symbiotic bacteria that enable commensal colonization.
Mammals harbor a complex gut microbiome, comprised of bacteria that confer immunologic, metabolic and neurologic benefits1. Despite advances in sequence-based microbial profiling and myriad studies defining microbiome composition during health and disease, little is known about the molecular processes employed by symbiotic bacteria to stably colonize the gastrointestinal (GI) tract. We sought to define how mammals assemble and maintain the Bacteroides, one of the most numerically prominent genera of the human microbiome. While the gut normally contains hundreds of bacterial species2,3, we surprisingly find that germ-free mice mono-associated with a single Bacteroides are resistant to colonization by the same, but not different, species. To identify bacterial mechanisms for species-specific saturable colonization, we devised an in vivo genetic screen and discovered a unique class of Polysaccharide Utilization Loci (PUL) that are conserved among intestinal Bacteroides. We named this genetic locus the commensal colonization factors (ccf). Deletion of the ccf genes in the model symbiont, Bacteroides fragilis, results in colonization defects in mice and reduced horizontal transmission. The ccf genes of B. fragilis are up-regulated during gut colonization, preferentially at the colonic surface. When we visualize microbial biogeography within the colon, B. fragilis penetrates the colonic mucus and resides deep within crypt channels, while ccf mutants are defective in crypt association. Remarkably, the CCF system is required for B. fragilis colonization following microbiome disruption with Citrobacter rodentium infection or antibiotic treatment, suggesting the niche within colonic crypts represents a reservoir for bacteria to maintain long-term colonization. These findings reveal that intestinal Bacteroides have evolved species-specific physical interactions with the host that mediate stable and resilient gut colonization, and the CCF system represents a novel molecular mechanism for symbiosis.
All animals live in symbiosis. Shaped by eons of co-evolution, host-bacterial associations have developed into prosperous relationships creating mechanisms for mutual benefits to both microbe and host. No better example exists in biology than the astounding numbers of bacteria harbored by the lower gastrointestinal tract of mammals. The mammalian gut represents a complex ecosystem consisting of an extraordinary number of resident commensal bacteria existing in homeostasis with the host’s immune system. Most impressive about this relationship may be the concept that the host not only tolerates, but has evolved to require colonization by beneficial microorganisms, known as commensals, for various aspects of immune development and function. The microbiota provides critical signals that promote maturation of immune cells and tissues, leading to protection from infections by pathogens. Gut bacteria also appear to contribute to non-infectious immune disorders such as inflammatory bowel disease and autoimmunity. How the microbiota influences host immune responses is an active area of research with important implications for human health. This review synthesizes emerging findings and concepts that describe the mutualism between the microbiota and mammals, specifically emphasizing the role of gut bacteria in shaping an immune response that mediates the balance between health and disease. Unlocking how beneficial bacteria affect the development of the immune system may lead to novel and natural therapies based on harnessing the immunomodulatory properties of the microbiota.
In situ hybridization methods are used across the biological sciences to map mRNA expression within intact specimens. Multiplexed experiments, in which multiple target mRNAs are mapped in a single sample, are essential for studying regulatory interactions, but remain cumbersome in most model organisms. Programmable in situ amplifiers based on the mechanism of hybridization chain reaction (HCR) overcome this longstanding challenge by operating independently within a sample, enabling multiplexed experiments to be performed with an experimental timeline independent of the number of target mRNAs. To assist biologists working across a broad spectrum of organisms, we demonstrate multiplexed in situ HCR in diverse imaging settings: bacteria, whole-mount nematode larvae, whole-mount fruit fly embryos, whole-mount sea urchin embryos, whole-mount zebrafish larvae, whole-mount chicken embryos, whole-mount mouse embryos and formalin-fixed paraffinembedded human tissue sections. In addition to straightforward multiplexing, in situ HCR enables deep sample penetration, high contrast and subcellular resolution, providing an incisive tool for the study of interlaced and overlapping expression patterns, with implications for research communities across the biological sciences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.