'QUADOS', a Concerted Action of the European Commission, has run an intercomparison aimed at evaluating the use of computational codes for dosimetry in radiation protection and medical physics. This intercomparison was open to all users of Monte Carlo, analytic and semi-analytic codes or deterministic methods. Its main aim was to provide a snapshot of the methods and codes currently in use. It also intended to furnish information on the methods used to assess the reliability of computational results and disseminate 'good practice' throughout the radiation dosimetry community. Eight problems were selected for their relevance to the radiation dosimetry community, three of which involve neutron transport. This paper focuses on the analysis of the neutron problems.
The QUADOS EU cost shared action conducted an intercomparison on the usage of numerical methods in radiation protection and dosimetry. The eight problems proposed were intended to test the usage of Monte Carlo and deterministic methods by assessing the accuracy with which the codes are applied and also the methods used to evaluate uncertainty in the answer gained through these methods. The overall objective was to spread good practice through the community and give users information on how to assess the uncertainties associated with their calculated results.
'QUADOS', a concerted action of the European Commission, has promoted an intercomparison aimed at evaluating the use of computational codes for dosimetry in radiation protection and medical physics. This intercomparison was open to all users of radiation transport codes. Eight problems were selected for their relevance to the radiation dosimetry community, five of which involved photon and proton transport. This paper focuses on a discussion of lessons learned from the participation in solving the photon and charged particle problems. The lessons learned from the participation in solving the neutron problems are presented in a companion paper (in this issue).
Since 1993, the Institute for Radiological Protection and Nuclear Safety (IRSN) has lead, in association with Electricité de France (EDF), a R&D study of a neutron personal electronic dosemeter. This dosemeter, called 'Saphydose-N', is manufactured by the SAPHYMO company. This paper presents first the optimisation of some detector components using Monte Carlo calculations, and second the test of the manufactured Saphydose-N under radiation following the IEC 1323 standard's recommendations for active personal neutron dosemeters. The measurements with the manufactured dosemeter were performed on the one hand at PTB (Physikalisch-Technische Bundesanstalt) in mono-energetic neutron fields and, on the other hand at IRSN in neutron fields generated by a thermal facility (SIGMA), radionuclide ISO sources and a realistic spectrum (CANEL/T400). The manufactured dosemeter Saphydose-N was also tested during measurement campaigns of the European programme EVIDOS ('Evaluation of Individual Dosimetry in Mixed Neutron and Photon Radiation Fields') at different nuclear workplaces. The study showed that Saphydose-N complies with the recommendations of standard IEC 1323 and can be used at any workplace with no previous knowledge of the neutron field characteristics.
Over the last few years IPSN has been developing a small, tissue equivalent proportional counter (TEPC) with multielement geometry for personal radiation protection monitoring. This paper presents the last prototype, which is insensitive to microphony, and the experimental results. Numerical modelling results using CERN codes are partly presented and allow an understanding of the nuclear and electrostatic physics involved in a TEPC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.